An Energy Estimation Method for Asynchronous Circuits with Application to an Asynchronous Microprocessor
Paul I. Penzes, Alain J. Martin
California Institute of Technology
Computer Science Department
Pasadena, CA 91125, U.S.A.
penzes@async.caltech.edu, alain@async.caltech.edu
Abstract
This paper presents a simulator operating on a logi​cal representation of an asynchronous circuit that gives energy estimates within 10% of electrical (lispicej sim​ulation. Our simulator is the first such tool in the liter​ature specifically targeted to efficient energy estimation of QDI asynchronous circuits.
As an application, we show how the simulator has been used to accurately estimate the energy consump​tion in different parts of an asynchronous MIPS R3000 microprocessor. This is the first energy breakdown of an asynchronous microprocessor in the literature.
1. Introduction
The increasing power consumption of modern VLSI systems requires better design methods to save energy. To guide the designer, energy estimation methods are needed to understand where and how the energy is con​sumed in a circuit. Clearly, there is a trade-off between the accuracy of the energy estimation and the level of detail at which the circuit is analyzed or simulated. The more detailed the description, the more accurate the simulation or analysis will be. But on the other hand, the more time consuming it will be. Also, the designer wants to make decisions as early as possible in the design process so as to avoid costly design back​tracking.
This paper presents a simulator operating on a log​ical representation of the design—called "production-rules" (PRs)—that gives energy estimates within 10% of electrical (hspice) simulation. The PRs of a design can be either extracted from the layout or synthesized extracted from the layout or synthesized from a high-level description. Similarly, the physical parameters needed for evaluating the energy can be extracted from the layout or computed directly.
The simulator and the estimation method have been developed for the design of asynchronous circuits. Asynchronous circuits do not use clocks. Communica​tion and synchronization among the units are imple​mented by handshake protocols. The particular type of asynchronous circuits this method is based on are called quasi-delay-insensitive, or QDI [1]. QDI circuit use no timing assumption on the delays of the opera​tors and wires, with the exception of some forks, called isochronic forks, in which the delays on the different
branches of the fork are assumed to be similar. QDI circuits are the most conservative asynchronous cir​cuits in terms of the use of delays. But they are also the most robust to physical parameters variations be​cause the circuit's dependence on delays is minimal. QDI circuits are interesting in the context of energy estimation because, first, they are inherently energy-efficient—absence of a global clock, locality of activity, automatic shut-off of inactive parts, absence of spuri​ous transitions (glitches), and second, the data encod​ing required for QDI circuits reduces data-dependent variation in switching activity, hence making the en​ergy estimation more accurate. Our simulator is the first such tool in the literature specifically targeted to efficient energy estimation of QDI circuits.
The paper is organized as follows. We first intro​duce PRs as both a programming language and a logi​cal model for transistor networks. We present previous work in energy estimation and focus on some of the resulting difficulties such as glitches and data depen​dencies. We then show how energy estimation in the QDI asynchronous context is simpler and more accu​rate than in the synchronous context. We describe the esim simulator that executes a PR set. The simulator can be used for logical, timing, and energy simulation. We then describe the model used for estimating energy and the resulting accuracy—when applied to QDI circuits.
As an application, we show how the simulator has been used to estimate the energy consumption in the different parts of the MiniMIPS [2], an asynchronous MIPS R3000. This is the first known energy breakdown of an asynchronous microprocessor in the literature.
2.
Production Rules as a Model for
CMOS circuits
A "production-rule" (PR) is a construct of the form G i-» 5, where 5 is a simple boolean assignment and G is a boolean expression called the guard of the PR [1]. For example, a nand gate with inputs x and y and output z is implemented by the two PRs: x A y i-» z I and ->x V -*y t-> z t- The PRs that set and reset the same variable, like -igl >-»• z "f, g2 i->- z 4- are implemented as one operator (#1 corresponds to the pull-up, while g2 to the pull-down circuitry of node z).
We use a PR set as the logical representation of QDI circuits. PRs closely correspond to the intended CMOS implementation of the circuit. The PR set of a given QDI circuit could be either synthesized from a high level representation or could be directly generated by the designer.
3.
Energy Estimation
3.1. Previous work
The estimation of energy consumption using a sim​ulator is complicated by the pattern-dependence prob​lem. In a synchronous circuit, the switching activity of a node depends on the current data being processed and also on the initial state of that node. Furthermore, during a clock cycle, a node might switch several times before settling to the steady state value. This extra switching activity (glitches) contributes to the total en​ergy dissipation. The extra energy added by glitches is typically 20%, but could be up to 70% of the total energy (in combinational adders) [3].
In general, the approach taken to alleviate the pattern-dependence problem is to assume some simpli​fying conditions about the input space and to attach user specified probabilities of transition [4] to the input nodes; probabilities that get propagated to all nodes of the circuit. In these methods two different assumptions might be made: a spatial independence, in which case input signals on the same clock cycle are assumed to be non-correlated and a temporal independence, in which case the value of the same signal in two consecutive clock cycles is assumed independent. Once the transi​tion probabilities are computed using probabilistic [5] or statistical [6] techniques, the energy can be com​puted as Eav = \V2dYJlLi dp{xi), where C{ is the total capacitance at node Xi, P{xi) is the transition probability at node X{ and m is the total number of circuit nodes that are outputs of logic gates (the power can be computed as Pav = ^p-, where T is the clock period). However, this estimation is a lower bound on the consumed energy, since there will be at most one transition per clock cycle for a given node; thus, glitching energy is not included. Some methods [7] use transition density instead of transition probability of a node to capture the glitching activity of the circuit.
All these methods are still pattern-dependent to some extent, except that now the user must supply information (in terms of probabilities) about a typical behavior at the circuit input. Furthermore, these tech​niques use simplified delay models which make the es​timation of glitching energy (in particular) more prone to error.
3.2. Energy estimation in the asynchronous con​text
Our method of energy estimation is also based on simulation [8]; however, as opposed to the syn​chronous design case, our approach practically is not input pattern-dependent due to the QDI circuit design methodology. In the following, we describe why we believe our energy simulation method of QDI circuits yields superior accuracy and performance when com​pared to simulators of synchronous circuits of the same complexity.
CMOS circuits have three main sources of energy dissipation: dynamic currents (due to charge and dis​charge of capacitors), short-circuit currents and leakage currents. Some existing simulation tools include the en​ergy dissipation due to short-circuit currents. We have found that—for the types of QDI circuits we are inter​ested in—they are not an important source of energy dissipation. Leakage currents are due to the subtresh-old behavior of the CMOS transistor. At the current state of technology they contribute a small fraction to the total energy consumption. For these reasons, for the purpose of this work we consider the contribution of both short-circuit currents and leakage currents to be null.
As in many other energy estimation tools, we focus our attention to the dynamic energy consumption

Edynamic = (1)
where C{ is the total capacitance at node i, rii is the transition count of node i during the measured period of time and m is the total number of circuit nodes. The main difficulty with this formula for synchronous systems comes from estimating rn. In the following, we will show how our method for estimating energy in QDI circuits deals with this difficulty.
3.3.
Energy estimation error due to glitching
As mentioned earlier, energy simulation of syn​chronous circuits is complicated by spurious transitions (glitches). The main reason is that glitches are highly delay dependent; any attempt to properly estimate the energy due to them has to include an accurate timing model. For QDI circuits, the design methodology ex​plicitly avoids glitches by enforcing the monotonicity of signal transitions [1]. As a consequence, the energy consumed due to glitches is null and there is no need to complicate the energy simulator with a timing model.
3.4.
Energy estimation error due to spatial depen-
dence (input correlation)
In a QDI circuit, data is encoded as dual-rail or 1-of-N signals. In general, we make no assumption about which rails of a data channel (as opposed to con​trol channel) would be exercised more often. As a re​sult, the corresponding CMOS circuitry is symmetric— in terms of transistor sizes—for each data rail within a channel. Furthermore, each activated node transi​tions exactly twice (not all signals become active, since some of them are inherently mutually exclusive). For these reasons, these types of circuits consume the same amount of energy, independently on the data being pro​cessed. Most of the QDI circuits we are interested in are of this type.
One important exception are adders. Consider a carry-lookahead adder. In such a circuit, the propagate rails have more load than the kill and generate rails, since—for uniform input distribution—a transition on the propagate rail is more likely. This effect generates some input pattern dependence on the consumed en​ergy. However, when put in the realistic context of the QDI design (input/output completions, data/control acknowledges, internal enable) this dependence is very weak. In case of an add instruction of the MiniMIPS [2], the difference between the worst case (all propa​gates) and best case (no propagates) energy dissipation is 1.53% of the average case; correspondingly, for an addi instruction the same relative difference is 1.49%.
For control channelsm the dependence could be stronger. This is expected, since different values of the control might activate different parts of the cir​cuit. Consider an adder again. In case of a regular add instruction, the two inputs used are coming from the register file; in the case of an add immediate in​struction one input comes from the register file, and the other from the immediate bus, and (depending on the implementation) this could take a different amount of energy. For these reasons, the energy corresponding to each distinct control signal of a given circuit block has to be estimated individually.
3.5. Energy estimation error due to temporal de​pendence (cycle-to-cycle dependency)
In a synchronous circuit, the switching of a signal depends not only on the data value on the current cycle, but also on the previous value of that node, causing a cycle-to-cycle dependency.
For a QDI circuit, each node that will be active dur​ing an operation will go through exactly two transitions (a charging and a discharging transition). By the end of the cycle, each node will be in the same state as it was at the beginning of the cycle—independently of the performed operation. This property eliminates cycle-to-cycle dependencies altogether.
There is one important exception, namely the case of writing state variables implemented as flip-flops. If the state bit has the same value as the value to be written to it, the bit will not flip. On the other hand, if the two values are different, the bit will transition and as a result energy will be consumed. Thus, depending on the initial condition of the state variable, an energy consuming event might or might not occur, causing a temporal dependence.
One way to deal with this problem is to simulate the system for the worst (all bits changing) and best (no bits changing) case and take as energy estimate the average of the two numbers. In practice, when such a flip-flop is integrated in its actual QDI environment, its energy contribution becomes small compared to the total energy dissipation. For example, the relative dif​ference between the worst case and best case write to a register in the register file of the MiniMIPS is 6.44% of the average case. Thus, if it is assumed that on average 50% of the state bits change the worst case error will be ±3.22%.
All in all, the energy variability due to temporal or spatial dependence of input data is localized and relatively small; thus, in general it can be ignored.
[image: image1.jpg]

Figure 1. esim capacitance model
4. The esim simulator
4.1. Energy model used by esim
The esim energy simulator estimates the dynamic energy consumption of a QDI circuit using Equation 1.
The general operation of the simulator is as follows. Once the simulator is launched on a closed PR set, all nodes are initialized and assigned an energy weight. At any time, the ready queue contains all PRs that are ready to be fired, i.e. whose guards are true. A step of the simulator consists of taking one PR out of the ready queue and firing it, i.e. changing the value of the variable the PR operates on. This firing may cause other PRs to become enabled, in which case their PRs are added to the ready queue. Which PR is removed from the ready queue on a firing depends on the timing settings used (timed or random) to initialize the simu​lator. If the PR just taken off the ready queue is in the scope of the monitored set, its assigned energy weight is added to a counter that keeps track of the total en​ergy consumed. Once the simulation is terminated, the energy counter contains the total energy consumed by the monitored region of the circuit.
There are two unknowns in Equation (1): the node capacitance C{ and the transition count n{. The node capacitance C\ is determined statically—as will be ex​plain later—when the simulator is launched. The tran​sition count rii is being taken care of automatically by the simulator: for each actual transition, the corre​sponding weight is added to an energy counter. Since our simulator handles transitions explicitly, each and every energy consuming signal switching is recorded.
As shown in Figure 1, each node in a PR set could have the following capacitive components: source/drain diffusion capacitance due to the PR's pull-ups and pull-downs (Cd), wiring capacitance {Cw), capacitance due to a staticizer ("keeper") if the node is state-holding (Cs) and gate capacitance due to the transistors the node is driving (Cg).There are other capacitive nodes present in the actual circuit that are not represented at PR level. They are mainly internal nodes of transistor chains. We choose to ignore the en​ergy dissipated to charge and discharge these internal nodes.
Depending on the level of detail of the simulated design, each capacitive component may or may not be available. If only the unsized PRs are available, all ca​pacitive terms are ignored except Cg that is estimated to be proportional to the actual (i.e. considering gate sharing) fanout of the corresponding node.
If a sized but unwired PR set is available for simula​tion, all capacitive components except Cw can be com​puted with good accuracy. The dynamic energy con​sumed by a node i can be written as E = Ecg + Ecd + ECa = K * {^transistor width) where the technology-dependent constant K can be computed directly or calibrated using hspice. When esim is first run on a PR set, the value of (]T) transistor width) is com​puted for each node and assigned to its corresponding weight variable in the data structure.
If a wired-up layout exists, the wire information can be added as explicit PRs into the original PR set. Given the capacitance of the wires (computed by the layout extractor) one has to transform these values into transistor width units. Once this is done, wires are treated by esim exactly as any other PR pair.
There are several energy dissipating sources esim is ignoring. Possibly the most important one is the energy consumed due to leakage currents. Some re​searchers have reported the increased importance of this energy dissipation source for submicron technolo​gies. Energy consumption due to short-circuit currents is ignored as well. Our evaluation shows that in typical QDI circuits the energy dissipated due to short-circuit currents is no more than 1.5% of the total energy con​sumption. There are two elements relating to dynamic energy consumption that are ignored. First, energy due to charge-sharing is not captured, and second, the en​ergy spent on charging and discharging internal nodes of transistor stacks are not accounted for. Our hspice simulations show that these dynamic energy dissipation sources can be safely ignored for most of the circuits we are interested in (in current technology).
4.2. Timing model used by esim
esim does not need a timing model for energy es​timation. For this reason, the simulator does not ex​plicitly compute the timing information of the PRs. However, if timing estimate is needed, the timing of each PR can be passed to esim using after delay rules; for example: after 123 a
[image: image2.wmf]Ù

 b i.e., will fire 123 time units after a and b become true. If no after rules are present, either random or unit timing is as​sumed depending on the simulation settings. The after rules can be assigned by a preprocessing phase using either a simple r-model estimation or using an hspice characterization table. The same after rules can be used to assign RC delays to wires. There is exten​sive research done in accurately predicting the timing behavior of transistor netlists; however, for many of our experiments, it is sufficient to use a simple tim​ing model based on counting transitions on the critical path, i.e. using esim with unit timings.
4.3. Accuracy and speed of esim
We have evaluated the accuracy of esim in estimat​ing energy on several test circuits ranging from 192 to 2584 transistors, by comparing the results to the hspice results recorded on the same circuits. We have done our evaluation in the HP 0.6/j, CMOS technology. We have evaluated different levels of detail in imple​menting the node capacitance computation [9]. The conclusion was that if Cg, Ca and Cs were included, the resulting error was in the range of 1.45% to 7.25%. From these results we have concluded that if the terms Cg, Cd and Cs are available to the simulation, the er​ror in energy estimate between hspice and esim is less than 10%. The salient assumption of this claim is that wire capacitance (Cw) is an order of magnitude smaller than gate capacitance for the considered de​sign. This assumption is true for most of the circuits sized for high speed, such as the MiniMIPS micropro​cessor. However, if this assumption is violated, wires have to be considered explicitly through PRs.
The discrepancy is due to all other sources of en​ergy consumption that were ignored, mainly the wire capacitance Cw—not included in the simulated PR set.
The speed of esim is outstanding: more than three orders of magnitude faster than hspice. One instruc​tion of the MiniMIPS (more than 2 million nodes) can be simulated in less than 1 second on a Pentium III Xeon 550MHz.
5. Energy Estimation of the MiniMIPS
In this section, we apply the esim simulator to ob​tain a breakdown of the energy consumption of the MiniMIPS. We believe that all the figures obtained by these simulations are no more than 10% smaller than the actual energy consumption figures of the fabricated chip. The MiniMIPS processor was fabricated in an HP 0.6m CMOS process; the quoted numbers refer to this technology. Given the technology independent PR rep​resentation of QDI circuits, it is straight-forward—as long as the assumptions about leakage and short-circuit currents hold—to extend the simulation tool to other technologies by simply recomputing the constant K for the target technology.
Icache
muldiv
Dcache
DCCTRL
fetch
adder
fblock
ICCTRL
shift
register file
PRE
WB
rross
Figure 2. Block diagram of the MiniMIPS
We have divided the processor into 15 functional units, shown in Figure 2. These units are: Icache (4K pipelined instruction cache core), ICCTRL (instruction cache control, tag comparison), PRE (instruction de​code), ITOSS (mispredicted instruction filter used for branch prediction), fetch (pc computation), register file (32 32-bit registers with locking, one-entry register by​pass), source bus (instruction bus, source operand bus, immediate bus), adder, shifter, fblock (logical-function block), muldiv (array multiplier, iterative divider), DC-CTRL (data cache control, exception pc queue, CPO registers), Dcache (4K pipelined data cache core), re​sult bus, WB (writeback unit).
In the following subsection, we describe the behavior and the associated energy breakdown of some generic groups of instructions.
5.1. nop
On a nop, the instruction is looked up in the instruction cache (Icache) based on the pc received from the fetch. Once the instruction cache control (ICCTRL) determines that the cache entry is valid, the instruction is sent to the decode (PRE). If the instruction is not a mispredicted branch, it passes through a filter (ITOSS) and is allowed execution. In parallel, the fetch is notified by the decode about the nature of the instruction such that it can compute the next pc. The register file is also notified about the nop instruction. In order to properly restore processor state in case of an exception or interrupt, the writeback unit (WB) is notified and the program counter is saved through the epc queue which is part of the data memory system (DCCTRL).
[image: image3.jpg]BET=

% g =]

am
snqmsa
apeaq
TL00a
Apinu
oy
oy
oppe

sng 32.mos
aqy o
sy
ssoul
@Ad
“RLLOOI

ayeay

Figure 3. Energy of a nop instruction
The total energy consumed by a nop executing from cache is 20.63nJ—the corresponding energy breakdown is shown in Figure 3 (an instruction cache miss adds 23.28nJ to the currently executing instruction). About half of the energy goes into bringing the instruction from the cache, and about one quarter of it goes into computing the next pc, and decoding and filtering the instruction. The epc queue (C DCCTRL) consumes a relatively high percentage of the total energy due to the high amount of buffering needed to perform its function. The writeback unit consumes relatively little energy, not only for nop's but for any other instruction. As previously mentioned, units not involved in the ex​ecution of the current instruction consume no energy; for a nop this is the case for 6 out of the 15 blocks of the processor. Even the units consuming energy might not consume their peak energy—an example being the register file which consumes only l.lOnJ while its peak energy consumption is 9.15nJ.
5.2. Arithmetic instructions
There are 4 different execution units in the MiniMIPS: the adder-subtracter, the logical-function block, the shifter and the multiplier-divider. Each instruction executed by one of these units is performed conceptually as follows. Once the instruction is launched for execution, the decode requests the regis​ter operands from the register file. Upon arrival of the operands, the execution unit performs the requested operation, and delivers the result to the register file on the result bus (except for the muldiv which writes the result to its local Hi/Lo registers). If the execu​tion unit could potentially raise an exception (adder) the exception information is sent to the writeback. The operation result is passed to the register file bypass and eventually written back to the register file core once the writeback allows it.
In order to determine the energy cost of a given arithmetic instruction, it is necessary to know where the operands are coming from within the register file: bypass, core or both. As a results, depending on the context, the same instruction could consume different amounts of energy. We have determined the energy cost of the following individual operations:
	operation
	bypass
	core
	total

	read from bypass
	0.54nJ
	—
	0.54nJ

	read from core
	0.74nJ
	2.11nJ
	2.85nJ

	write
	1.53nJ
	0.82nJ
	2.35nJ

	reg. file control
	—
	—
	l.lOnJ

Based on these individual results, a register file op​eration could take anywhere from 1.64nJ (reading one operand from the bypass) to 9.15nJ (reading two operands from the core and writing back one result).
The arithmetic instructions—based on their energy consumption—can be divided into (8) groups, group A: add, addu, sub, subu, sit, situ, group B: addi, addiu, slti, sltiu, group C: sll, sra, srl, group D: sllv, srav, srlv, group E: and, nor, or, xor, group F: andi, ori, xori, group G: mult, multu and finally group H: div, divu. The breakdown of the energy consumption of each group of instruction is shown in Figure 4; the energy consumed by the muldiv unit was reduced by 100 x to fit the graph.
While the energy spent in manipulating the instruc​tion (cache, decode, fetch, epc queue, WB) is the same as for a nop, the cost of executing the instruction is different. For example, the total energy consumed by an add reading both operands from the register core is 34.33nJ, reading one operand from the register core and the other from the bypass is 32.02nJ and finally, reading both operands from the bypass is 30.21nJ. The energy consumed by the adder is less that 10% of the total energy of a group A or B instruction. The shifter consumes about 2 times, and the fblock about 1/3 of the adder's energy. The multiply part of the muldiv consumes about 10 times more energy than the adder, while the divider part of the muldiv consumes about 90 times more than the adder.

[image: image4.jpg]= e e

=

ay ooy
T e—

g

aprag
LD
Atpmw
wory
souws
soppe

snq 2amos
2y 321
Wy
ssou
aAd
LD

ey

[image: image5.jpg]am
ey 222, g ypnsas
apwq
TLOaA
001 Hme Samas AP

fE=] wory
s s
oo
Ve mea e
35
P smq somos

apuadap pxouoa| 1Y B0
2y

= ssou
=— @ud

T4LIOL
ayawp

Figure 4. Energy of an arithmetic instruction

Figure 5. Energy of controi-flow instruction
5.3. Control-flow instructions
There are two kinds of control-flow instructions in the MiniMIPS: unconditional jumps and conditional branches. An unconditional jump computes the pc of the next instruction either by concatenating the high order 4-bits of the delay slot's address, 26-bits of im​mediate and 2 zero bits (j , j al) or directly from a register (jr, jalr).
A conditional branch has the branch target address computed from the sum of the delay slot's address and a 16-bit offset, shifted left two bits and sign-extended to 32-bits. Depending on the type of the conditional branch, the contents of two registers or one register and zero are compared. In the MiniMIPS, each con​ditional branch is predicted taken if it is a backward branch or not taken if it is a forward branch. There are different energy costs for a correctly predicted branch and a mispredicted branch. Conditional branches— based on their energy consumption—can be divided into 3 groups, group A: beq, bne, group B: bgez, bgtz, blez, bltz, and group C: bgezal, bltzal. Figure 5 shows the energy breakdown for unconditional jumps and correctly predicted conditional branches. Condi​tional branches are comparable in energy consumption to less costly (E, F group) arithmetic instructions.

In case of a mispredicted branch, the instruction is canceled in the ITOSS unit and the fetch resends the— now correct—pc to the instruction cache. In this way, only the instruction fetching consumes energy (includ​ing: the eDC aueue), while the rest of the processor does not. Once the correct instruction is brought back from the cache, the execution of the branch procrrds as in the correctly predicted case, except now the fetch con​sumes 6.04nJ for all conditional branches. The total energy cost of branch misprediction is 21.49nJ, just a bit more than that of a nop.

[image: image6.jpg]

Figure 6. Energy of load/store instruction
5.4.
Load/store instructions
Another group of instructions are the load/store's. The MiniMIPS implements only word operations to/from memory: load word (lw) and store word (sw). Their energy breakdown is shown in Figure 6. A data cache miss adds 30.86nJ to the current load instruction.
5.5.
esim agreement with lab data
Thanks to Mika Nystrom, we have collected lab data of the total energy consumed by the fabricated chip running certain instructions. The next table compares these results with the results estimated using esim.

	instr
	lab
	esim
	error

	nop
	22.71nJ
	20.63nJ
	9.16%

	addiu r2, rl, 0
	34.06nJ
	31.57nJ
	7.31%

	sll rl, rO, 0
	34.85nJ
	33.58nJ
	3.64%

	or r2, rl, rl
	33.78nJ
	32.32nJ
	4.32%

	ori r2, rl, 0
	31.04nJ
	29.60nJ
	4.64%

	mult rl, rl
	61.19nJ
	56.77nJ
	7.22%

	lw r2, 0(rl)
	44.87nJ
	41.51nJ
	7.48%

This comparison shows that the error between lab data and esim is as expected—given the accuracy of hspice—within 10%.
The application of esim to the PR set of the Min-iMIPS gave us important insights in the specifics of en​ergy consumption in an asynchronous processor. This knowledge will be useful for the contemplated redesign of the MiniMIPS.
6. Conclusion
We have presented a method and a simulator for the accurate energy estimation of QDI circuits.
The method is based on the "production-rule" (PR) notation, which gives an accurate logical description of the circuit. The PR set of a system can be either synthesized from a high-level description or extracted from layout. The esim simulator is both simple and ef​ficient and can be parallelized easily. It can be used for logical, timing, energy, or combined Et2 [2] simulation.
The models for capacitance and delays can be as simple or as sophisticated as necessary, and can be either estimated from a high-level description or ex​tracted from layout. The accuracy of the physical mod​eling of switching activity is greatly improved by the absence of glitches and other beneficial properties of QDI circuits. Of course, estimating interconnect ca​pacitances accurately remains a problem.
The method has been successfully applied to the energy estimation of a complete asynchronous 32-bit MIPS microprocessor, demonstrating the efficiency of the method for the simulation of large systems. The results also shed light on the energy budget of such a processor. In particular, it shows that 90% of the en​ergy is consumed in communication and only 10% in actual execution of instructions.
These results and the accurate energy breakdown will be useful for the contemplated redesign of the asynchronous MIPS, which will be optimized for Et2. We expect greatly improved energy consumption compared to the present design.

Acknowledgments
We wish to thank the members of the Asyn​chronous VLSI Group at Caltech for many stimulating discussions: Mika Nystrom, Catherine Wong, and Karl Papadantonakis, and Jose Tierno from IBM, TJ Watson Research Center.
The research described in this paper was sponsored by the Defense Advanced Research Projects Agency and monitored by the Air Force under contract F29601-00-K-0184.
References
[1] Alain J. Martin. Synthesis of Asynchronous VLSI Circuits. Formal Methods for VLSI Design, ed. J. Staunstrup, North-Holland, 1990.
[2] Alain J. Martin, et al. The Design of an Asyn​chronous MIPS R3000 Microprocessor. Proceed​ings of the 17th Conf. on Adv. Research in VLSI, IEEE Computer Society Press, 164-181, 1997.
[3] A.Shen, A.Ghosh, S.Devadas, K.Keutzer, "On av​erage power dissipation and random pattern testa​bility of CMOS combinational logic networks," IEEE/ACM Int. Conf. Computer-Aided Design, Santa Clara, CA, Nov. 8-12, 1992, pp 402-407
[4] M.A.Cirit, "Estimating dynamic power con​sumption of CMOS circuits," IEEE Int. Conf. Computer-Aided Design, pp. 534-537, 1987
[5] C.Y.Tsui,M.Pedran,A.M.Despain, "Efficient esti​mation of dynamic power consumption under a real delay model," IEEE Int. Conf. CAD, Santa Clara, CA, Nov 7-11, 1993, pp. 224-228
[6] R.Burch, F.Najm, P.Yang, T.Trick, "McPower: A Monte Carlo approach to power estimation," IEEE/ACM Int. Conf. Computer-Aided Design, Santa Clara, CA, Nov 8-12, 1992, pp. 90-97
[7] F.Najm, "Transition density: a new measure of ac​tivity in digital circuits," IEEE Trans. CAD, vol. 12, No. 2, pp. 310-323, Feb. 1993
[8] Matt Hanna, Eitan Grinspun, "A Production Rule Simulation" Caltech Computer Science Technical Report, 2000
[9] Paul I. Penzes. Energy-delay Efficiency of Asyn​chronous Circuits, Ph.D. Thesis (in preparation), California Institute of Technology, 2002.
_1219477900.unknown

