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Abstract. The asynchronous approach to building digital systems on any scale has the potential for vast improvement over conventional methods. This report serves to both verify the correctness of our self-timed cell set for the Xilinx FPGA architecture, and to demonstrate a fully-functional asynchronous system which has been realized in hardware. Also covered is a discussion of asynchronous pipelining of digital systems. 

1. Introduction 

An investigation of the advantages of asynchronous or self-timed pipelines[1] has clearly demonstrated many advantages over conventional clocked systems. These include pipeline size elasticity, performance related to average combinational block delay, the ability to handle both different and varying input and output data rates, and a simplicity of design which easily lends itself to data bus width expansion. 

A multiplier was chosen to demonstrate the applicability of the self-timed design methodology both because of its practical nature, and because it is a fine example of a data-intensive system. The multiplication algorithm used here is the popular “shift-add” algorithm which is described in most modern digital design or computer architecture texts[2].

As will be discussed, the design implemented here uses a slightly different form of the asynchronous pipeline show in [1] due to small differences between our macromodule cell set[3] and Sutherland’s. The resulting system was, in fact, placed successfully into the Xilinx part, and performed as expected. 

2. Control Structure 

In addition to the standard pipeline structure, which is made up primarily of storage elements and interstage combinational logic blocks, the asynchronous pipeline circuit includes a sophisticated control structure. The purpose of this control system is to establish the interstage communication needed for pipeline elasticity. 

This pipeline has been constructed in such a way that every stage has knowledge of the state of that which succeeds it. In essence, two states make up the state space of each stage, empty and full. The pipe’s elasticity implies that data, upon entering the pipeline, will travel along it and store itself in the last non-full stage’s latches. In this way, data presented to an empty pipeline will soon appear at the output port, fully processed, and ready to be read off by the environment. The behavioral description of each stage in the pipeline must therefore take the following form: 

When data is present at my inputs, if my successor’s state is empty, latch it into the next stage, else store it until the successor announces that it is ready to accept new inputs. 

We should at this point note that this is also the behavior of the final stage in the pipeline where the successor is effectively the environment. When the environment signals that the data at the output port has been latched at the destination, then the final stage is free to alter the output data. 

Our transition-sensitive latches act as the memory for our pipeline. The capture and pass inputs of these act to signal the stage’s state. When a latch is in the transparent, pass mode, it is considered empty. The full state therefore corresponds to the latch having captured its data and frozen its output. 

At each stage in the pipeline, two signals affect whether or not data will be captured. One of the signals comes from the direction of the pipe’s beginning, and serves to announce that data is present, and needing to proceed in the pipe. The other signal comes from the direction of the end of the pipe, and communicates when the succeeding stage is ready for a new set of input data. The Muller C-Element[4] is used to wait on both of these events, because these two signals are required for the capture to occur. 

3. Implementation 

The nature of the shift-add multiply algorithm[2] is such that pipelining is very straight-forward. As shown in the block diagram (Figure 1), the right hand portion of the circuit is simply a FIFO. This is a simple structure made up of our asynchronous latches without any interstage combinational logic, and it serves a dual purpose. The first is to propagate the multiplier bits up the pipeline so they may be used in each of the stages to determine what value will be added to the partial result. The second purpose, as witnessed by the data bits entering from the left is to place the least significant result bits in the correct bit position by the time the result reaches the end of the pipe. Note that this block diagram does not show the full length of the pipeline.
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The left hand portion of the circuit is where the computation takes place. This is done inside each of a series of mullcell elements. The mullcell element is nothing more than three asynchronous latches with common control inputs, feeding a one-bit adder circuit built with standard combinational logic. In this way, we can see that the control signals, generated on the far right side of the circuit, control the operation of the entire corresponding row of registers, and thus the data flow up the pipe. 

It is important at this point to note the presence of delay elements in the control portion of the system. Since the data bundling assumption is our chosen method of data transmission, we must ensure that the interstage constol signals reach the succeeding stages only after the data is stable at the following stage’s inputs. The delay elements serve this purpose by deliberately slowing the control signal to give the data sufficient time to propagate through the series of one-bit adders inside the mullcell elements. The nature of the Xilinx part and software makes this a non-trivial task due to the variability of signal path delays for each layout of the same circuit[5]. 

Since the circuit was designed to be physically implemented in the Xilinx 4003 FPGA device, it was decided that the demonstration board would be an effective means of verifying its performance. Our demonstration board was fitted with a series of DIP switches which served as our data and control input devices. Two seven-segment displays were utilized to generate the display control signals. Two additional LEDs were used as output devices for the ACK and OUTREQ signals. The three control inputs INIT, REQ, and OUTACK were all debounced using an internal oscillator and delay flip-flops. This debouncing was necessary because of the board’s noisy switches, and because of the potential operational hazard which could arise from specific types of switch bounce. 

4. Results 

The final partitioned design resulted in a Xilinx .lca file which included about 75 configurable logic blocks (CLBs). Of these, 70 of them were “packed,” or optimally utilized. An analysis of the circuit’s constituent components makes it easy to account for the somewhat large CLB count. The following are the contents of our circuit, and the CLB count associated with each component type: 

# of 

components 

Component Type # of 

CLBs 

73 Asynchronous Transparent Latch 37 

5 Muller C-Element 3 

5 Delay Module 5 

16 Combinational Adder Block 16 

2 Seven Segment Display Driver 6 

Debounce Logic/Loose Ends 8 

TOTAL 75

While speed is a property which proves difficult to estimate or test, we do expect that the above-mentioned advantages of this asynchronous structure will prove themselves in the resultant system throughput. An investigation into the problems of correct and accurate implementation of the data bundling assumption in FPGAs[5] has show that convergence to an optimally delayed control path inside an FPGA is an extremely elusive target. Therefore, it is assumed that the performance exhibited by this system would pale in comparison to the same system implemented with direct VLSI layout of CMOS devices. This is because delays along data paths would be precisely known, and control line delays would be hand-tailored to suit the circumstances. It is also assumed that, in the near future, there will exist an FPGA architecture and partitioning software which can handle the specific requirements of these self-timed systems. 

5. Future Enhancements 

As stated above, and in [5], alternative technologies may be better suited to the asynchronous design methodology, however, the Xilinx FPGA has proven to be an adequate architecture for fast prototyping of self-timed systems. Our resulting multiplier device is extremely well suited to integration into any asynchronous system requiring the 4-bit multiply function. Enhancements to this circuit could conceivably come in the form of optimized control signal path delays. We have shown that the area used in this implementation is virtually optimal by the fact that the majority of the CLBs were packed, i.e., there is very little wasted space in the XC4003 device. The micropipeline structure has proved itself to be quite simple to implement, and, as with any type of design, seeing it work in Silicon has been extremely satisfying.
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