A Self-Timed Multiplier using Conditional Evaluation

V.A. Bartlett and E. Grass

University of Westminster Department of Electronic Systems 115 New Cavendish Street, London WIM 8JS, UK.

v.bartlett@westminster.ac.uk
Abstract

A low-power, self-timed, CMOS array multiplier, optimized for asynchronous DSP but also applicable to synchronous DSP applications is presented. In order to reduce average power consumption, a strategy termed conditional-evaluation is introduced whereby addition is carried out only in rows of the carry-save array whose bit-product is non-zero. Simulation results are presented for a transistor-level, 8-bit x 8-bit implementation which shows an average-case energy consumption of 73pJ with an average delay of 30.5ns.

1. Introduction

Multiplication is an essential operation in most DSP systems and the energy efficiency of the multiplier can have a considerable impact on the overall power requirement of a DSP chip. The aim of the work presented in this paper is to develop a low-power multiplier targeted to asynchronous DSP systems. The technique is also applicable to synchronous systems if low power is of crucial importance.

For low-power operation, dynamic logic (such as domino logic [1]) inherently offers some advantages. In particular its reduced switched capacitance means that circuit activity draws less energy from the supply. Furthermore, since each output can undergo, at most, one transition per evaluation, spurious transitions, which in certain circuits can account for some 30% of the energy requirement [2], are eliminated. However, because a domino stage can implement only non-inverting functions, dynamic carry-save array (CSA) multipliers have traditionally used less energy-efficient, differential techniques [3] such as DCVSL [4]. The energy savings of dynamic logic are further offset by the need to charge and discharge the precharge/evaluate lines. This normally takes place once per cycle although with the conditional-evaluation technique reported here, for parts of the circuit it can happen less frequently.

More recently, a self-timed technique has been proposed to enable the use of nondifferential dynamic logic in a CSA and considerable power savings are reported [5]. According to our own investigations, the technique has the additional advantage that charge-sharing problems, which with conventional dynamic logic can lead to increased transistor count, are eliminated. With our multiplier, this self-timed strategy is modified in three significant ways. Firstly, the architecture of the CSA used, is one which enables data-dependent delays to be exploited [6]. Secondly, to save energy, evaluation is carried out only in rows of the array whose bit product is non-zero - a technique we term 'conditional-evaluation'. Thirdly, we use the Activity-Monitoring Completion-Detection technique [7,8] to further exploit data-dependent delays in the Carry-Resolution Adder. The fact that the multiplication operation is often a bottleneck in DSP systems makes data dependent performance, which can inherently be accommodated by asynchronous architectures, an interesting field for investigation. In order to evaluate this strategy we apply it here to an unsigned multiplier implementation.

2. Array Multiplier Design

2.1. Data-Dependent Carry-Save Architecture

Traditional CSA multipliers, in which an n-bit multiplicand (MD) is multiplied by an m-bit multiplier (MR) comprise in principle an array of gated full-adder cells. Partial products from each row are passed on to the row below as two, n-bit vectors, one composed of the Sum outputs and one composed of the Carry outputs of the full-adders. The Sum and Carry vectors emerging from the m^ row of such an array are added in a carry-resolution adder (CRA) to produce the final multiplier output.

In a recent paper, an architecture was proposed by Bergmann and Kearney for a CSA particularly suited to asynchronous applications, in which propagation delays through the array are made data-dependent [6]. In that design, each cell has no AND gate but is fitted with a pair of multiplexers (MUXs) which, when a row's bit product is zero, pass on unaltered, the SUM and CARRY inputs from the row above, to the row below. For rows whose bit-product is non-zero, the MUXs select the adder outputs to feed to the row below. Since the propagation delay through the bypass path is less than that through the adders, values of MR which are heavily populated with zeros produce less delay through the array than those heavily populated with ones. A comparison of the standard and Bergmann-Kearney (BK) architectures is shown in Figure 1.

Figure I Carry-save array (CSA) architectures. Standard (left) and Bergmann-Kearney (right)

2.2. Dynamic multiplier cell

The race problem associated with cascading dynamic logic stages has a number of possible solutions, one of which was reported in [5] and termed 'Delayed-Evaluation'. This approach uses inserted delays to postpone the evaluation of each dynamic stage until all of its inputs have stabilised. When applied to the BK array, further improvements in energy efficiency are possible using a novel technique we call 'Conditional-Evaluation' . This is based on the principle that transitions on precharge/evaluate lines are only required for those parts of the circuit which are performing useful computation -otherwise such parts can be held in a 'dormant' state (e.g. continuously precharged) until the next multiplication. This can be achieved in a BK array by using cells composed of dynamic full-adders but with static MUXs. The inclusion of static MUXs allows a row to function correctly in bypass mode with no transition on the precharge/evaluate lines -these remain in precharge mode until addition is called for. Assuming equal probabilities of ones and zeros in the bits of MR, on average only 50% of the precharge/evaluate lines will be driven for each multiplication, yielding an attendant reduction in energy consumption. This is an important mechanism for power saving - with our circuit, a row in bypass mode typically uses an order of magnitude less energy than one performing an addition.

2.3. Array Timing

In our implementation of the multiplier cell, the full-adder is itself composed of a cascade of two dynamic n-blocks, one which evaluates the Carry-Out signal, Co, and one which uses Co to evaluate the Sum output, S. Each row of the CSA therefore has two precharge/evaluate lines, here labelled CarryEval and SumEval, which are controlled by a timer circuit whose structure is shown in Figure 2. The AND gate inhibits transitions on the CarryEval and SumEval when MR(i) is zero.

Figure 2 Row-timer for BK array using Conditional Evaluation

For rows whose multiplier bit is one, evaluation, takes place when low-high transitions occur on CarryEval_H and SumEval_H, separated in time by Tc. The duration of Tc is chosen to allow Co to settle before switching the sum circuit into evaluation mode. Similarly, Ts and Ть are chosen to delay evaluation in the following row until it is safe to do so. Delays are implemented with a minimum-sized inverter whose pull-down is connected to ground via a permanently-on n-type. The channel length of this latter device is selected to produce the required delay.

The timers are connected in cascade as shown in Figure 3. The circles correspond to the dotted box of Figure 1. A 4x4-bit example is shown to illustrate the multiplier structure.

Figure 3 Multiplier Structure (4x4-bit example)

Trigin of the first row's timer is driven by a 'START' signal which initiates the multiplication operation. It is a requirement of this type of circuit that the input operands are stable before the leading edge of the START signal and remain so throughout the computation. TrigOut of the m^ row's timer indicates that the Carry-Resolution Adder has stable data on its inputs.

2.4. Carry Resolution Adder using AMCD

A Carry Resolution Adder (CRA) is used in standard architecture CSA multipliers to add together the n-bit sum and carry vectors emerging from the m^ row of the CSA. An n-bit adder is therefore required. With the BK architecture, the required CRA must add summands of more than n bits to deal with the extra, unresolved carries emerging from rows in bypass mode. Since the first two rows of the CSA cannot generate unresolved carries, an adder of length n+m-3 bits is required.

The propagation delay of the CRA adds directly to the latency of the multiplier and it is often appropriate to use a fast addition technique such as carry-look-ahead provided that the area and energy penalty can be tolerated. With asynchronous systems, average case performance is a significant parameter and our CRA uses a ripple-carry adder with an appropriate completion-detection strategy. This keeps the increase in average latency, due to the extra m-3 bits, small.

The multiplier presented here uses the Activity-Monitoring Completion-Detection (AMCD) method [7] to speed-up the average-case performance of its CRA. AMCD has certain advantages over other completion-detection methods. In particular it can be applied to standard CMOS logic circuits (both static and dynamic) without the need for differential circuitry. Furthermore, its silicon and energy overhead is small in comparison with other techniques particularly when applied to domino CMOS [8] - the design style used in this CRA.

AMCD is based on the premise that a CMOS circuit will have completed its computation when all transitions on its wires have ceased. With AMCD, Activity-Monitors (AMs) are connected to certain points within the circuit, each AM generating a narrow pulse on its output when it detects a transition on its input. The presence of the pulse signifies that the circuitry immediately downstream of the AM, is likely to be not yet settled since a transition has just occurred on one of its inputs. Assuming appropriate placement (granularity) of the AMs and sufficient pulse-widths to ensure overlap, the logical OR of the individual pulses indicates that the whole circuit is still in transition. This signal is generated with a wired-OR configuration and its trailing edge indicates that the circuit has completed its operation. To deal with the case when there are no transitions on the monitored signals (e.g. when the output of the multiplier is zero) a minimum-delay-generator (MDG) is required.

The CRA used here utilises the same full-adder design as the CSA, consisting of two cascaded n-block domino circuits. The CRA's CarryEval signal is connected to the TrigOut signal from the m^ row's timer thereby initiating evaluation as soon as the CRA inputs are stable. CarryEval is also connected to an AM in order to generate the required minimum delay for the AMCD circuit. To avoid the dynamic race, evaluation of the sum circuits is delayed until the output from the AMCD circuit, CACT, indicates that all ripple-carry circuits have settled. Since with AMCD, an edge indicates completion, an interlock circuit as shown in Figure 4 is used in the CRA controller. Several alternative implementations could be used to effect the desired timing; the one used here exploits the existing AM design from the AMCD circuit.

Figure 4 CRA Controller for Sum Circuit

An additional delay is used to produce the DONE signal. DONE is merely the CRA's SumEval signal delayed by at least the settling time of the sum circuit. Its leading edge indicates completion of the multiplication operation. Similarly its trailing edge indicates that the multiplier's precharge phase is complete.

2.5. Asynchronous Interface

To ensure low-power operation it is important that the multiplier is not left with its START signal true for longer than the dynamic storage time. If this were to occur, charge leakage from dynamic storage nodes could cause excessive power dissipation through class-A conduction in the domino inverters. The handshake protocol adopted by an asynchronous system using this multiplier therefore has to ensure that this situation cannot occur. A protocol suitable for dynamic logic that meets this requirement is reported in [9].

3. Performance

Transistor level simulations of an 8x8-bit multiplier using devices taken from a 1 .Оцт n-well CMOS process library were run on a SPICE-based analog simulator. A 5V supply was used. In order to reduce switched capacitances, all transistors in the data-path are of minimum size.

The highly data-dependent completion time of this circuit depends principally on two factors: the number of ones in MR and the length of the carry-ripple in the CRA. With fairly conservative timing margins, a row of the CSA takes approximately 0.55ns and 3.5ns in bypass and addition modes respectively. The CRA takes approximately 3.2ns fixed-delay overhead plus 0.5ns per carry-ripple bit. Table I shows a comparison of the minimum, average and maximum propagation delays for both evaluation and precharge phases. Energy consumption is also shown. Since increased circuit activity requires more delay and more energy, these two parameters have a strong correlation. However, the computation yielding worst case delay is not in fact that which uses the most energy.

Minimum
Average
Maximum

Evaluation Delay
7.3ns
20.1ns
33.5ns

Precharge Delay
5.4ns
10.4ns
15.5ns

Total Delay
12.7ns
30.5ns
49.0ns

Energy
12.5pJ
73pJ
148pJ

Table 1: Simulation results for 8х8 multiplier

Averages here are calculated from multiplications of 50 pairs of uniformly distributed random numbers. An exhaustive high-level simulation of the architecture was used to determine operand values corresponding to the fastest (MD=MR=0) and slowest (MD=129, MR=255) cases. It should be noted that slowest-case operand values depend on the relative sizes of the delay per row of the CSA and the delay per carry-ripple bit of the CRA.

Direct comparisons with other multipliers is made difficult by the diversity of process, supply voltage and so forth, encountered in other reported designs. However, for the low-power multiplier design of [5] figures of lOOpJ per multiplication at a throughput of I MHz were reported. Normalizing these values to allow for the differences in operand-wordlengths, supply-voltage, process-dimensions and transistor-ratios allows a very approximate comparison to be made with our design. Such a normalization yields figures of 241pJ at 25MHz throughput for the design of [5] as compared with 73pJ for the design reported here at a throughput of either 20MHz or 32MHz in a synchronous or asynchronous environment respectively.

Some scope exists for trading speed and energy per multiplication by, for example, widening appropriate transistors (for improved speed) or lowering the supply voltage (for reduced energy). As with standard array multipliers optimisation of the cells around the periphery of the array would yield a slight further improvement in device count, latency and energy consumption.

4. Conclusions

The reported multiplier design style offers both low device count as well as significant energy savings. This is achieved firstly by the use of single-ended dynamic logic with delayed evaluation and secondly by the application of the novel conditional-evaluation technique. Although these techniques have the effect of increasing worst-case latency, exploitation of data-dependency delivers average-case performance which largely offsets this cost.

Having verified the feasibility of this approach, a fully laid-out, 16х16-bit, signed multiplier is to be undertaken.

5. References

[1] R. Krambeck, С. Lee and H.R Law, "High speed compact circuits with CMOS", IEEE Journal of Solid-State Circuits, vol. SC-17, pp.614-619, 1982.

[2] A. Chandrakasan, S. Sheng and R.W. Brodersen, "Low-Power CMOS Digital Design" IEEE Journal of Solid-State Circuits, Vol. SC-27, pp.473-484, 1992.

[3] Т. H.-Y. Meng, R.W. Brodersen and D.G. Messerschmitt, "Asynchronous Design for Programmable Digital Signal Processors" IEEE Transactions on Signal Processing, Vol. 39(4), pp.939-952, 1992.

[4] L.G. Heller and W.R. Griffin, "Cascode Voltage Switch Logic: A Differential CMOS Logic Family," ISSCC Dig. Tech. Papers (New York), pp.l6-17, Feb. 1984.

[5] G.E. Sobelman and D. Raatz, "Low-power multiplier design using delayed evaluation", Proc. International Symposium on Circuits and Systems, pp. 1564-1567,1995.

[6] D. Kearney and N.W. Bergmann, "Bundled Data Asynchronous Multipliers with Data Dependent Computation Times", Proc. 3" International Symposium on Advanced Research in Asynchronous Circuits and Systems, IEEE Computer Society Press, PP.186-197,1997.

[7] E. Grass and S. Jones, "Activity-Monitoring Completion-Detection (AMCD): A new approach to achieve self-timing" Electronics Letters, Vol. 32, (2), pp.86-88, 1996.

[8] V.A. Bartlett and E. Grass "Completion-Detection Technique for Dynamic Logic" Electronics Letters, Vol. 33, (22), pp. 1850-1852, 1997.

[9] S.B. Furber and J. Liu, "Dynamic Logic in Four-Phase Micropipelines", Proc. 2^ International Symposium on Advanced Research in Asynchronous Circuits and Systems, IEEE Computer Society Press, pp. 11-16, 1996.

