STFSM - Self-Timed Finite State Machine:

From Example to Synthesis

Victor Varshavsky, Vjacheslav Marakhovsky

The University of Aizu

Aza Kami-Iavase 90, Oaza Tsuruga, lkkimachi Aizu-Wakamatsu-shi, Fukushima-ken 965, Japan

Abstract

One of the key synthesis problems of self-timed circuits and devices is the specification of their interaction with an environment. On the other hand, the well-developed and widely used language of finite-state machines enables us, without particular problems, to specify a required behaviour in the interaction with environment in synchronous models.

In this report we'll try to demonstrate one of the possibilities of using the automaton approach .to self-timed devices design. The presentation will be made by an example for which one will take one of the wide-known benchmarks - Self-Timed Stack (Last-in-First-out) Memory.

1. Introduction

One of the key synthesis problems of self-timed circuits and devices is the specification of their interaction with an environment. In principle, this problem is erased by using standard practice and standard handshake with standard (library) input devices [1, 2]. However, in a number of cases the synthesis problem is stated just with respect to the circuits of environment interaction. In this case one can use again the known synthesis procedures with the use of the known languages of behaviour specification (Signal Transition Graphs [3, 4], Change diagram [5, 6], etc.). In so doing, as a rule, the simulation of environment behaviour is included in the general behaviour specification that, in its turn, calls for "unfolding" of the general specification and essentially conplicates both the synthesis procedure and, in fact, the procedure of specification.

On the other hand, the well-developed and widely used language of finite-state machines enables us, without particular problems, to specify a required behaviour in the interaction with environment in synchronous models. It is a natural desire in this case to combine the knowledge and simplicity of finite-state machine models with the specification end synthesis methods of self-timed structures. This idea is not obviously original. We ourselves started to study self-timed structures from such models [7, 8]. Widely known are other works on the use of finite-state machine models in self-timing (see, e.g., [9, 10]).

Below we'll try to demonstrate one of the possibilities of using the automaton approach to self-timed devices design. The presentation will be made by an example for which one will take one of the wide-known benchmarks - Self-Timed Stack (Last-in-First-out) Memory.

2. Self-Timed Stack Memory

2.1. General Structure

A few approaches to design of "Stack" type memory are known. They can be separated into two main kinds:

- register structures with revers information shift;

- stacks based on memory with a reversible shift of its address marker.

As a rule, in considering Self-Timed Stack Memories, the register structures are considered [11, 12]. Such a restriction is connected with a weak knowledge of self-timed memory arrays. The indication of the read termination moment, e.g., for a conventional CMOS static memory, when data paths are double-rail, presents no problem. The major problem involves the indication of the write termination moment. This problem can be solved (and was solved exactly in such a way [13, 14] for CMOS static memory) by partitioning the write process into two phases - information read and rewrite without passing of passive states on the outputs. In this case the write process termination is determined by coincidence of read and written codes. Here we do not touch on some fibe points of organization and control circuits of memory since these questions are beyond the subject of this paper. We note only that certainly the use of this self-timed procedure results in the slowdown of memory operation. However, in memories of the type Last-in-First-out and First-in-First-out we know the next address or a pair of possible next addresses that enables us to speed up radically the operation of this memory by organizing pipelined interaction "input register - memory", ensuring a parallel operation of external register ports and memory itself. However, this question is also beyond the aims of the paper.

The stack structure is shown in Fig.l. Not touching on, as we have already noted above, the circuits of Self-Timed Memory Array, we shall consider the circuits and behaviour of a Stack Pointer generating address and a control automaton that, in fact, is the main aim of the paper.

The following control signals were used in the structure in Fig .1:

W - a signal of write into stack (PUSH);

R - a signal of read from stack (POP);

(W and R signals enter the control automaton, determining the mode of Stack Pointer operation, and Self-Timed Memory Array determining the mode of memory operation.)

Ack - a signal of memory operation termination coming from Memory to environment;

Adr - a set of address signals from Stack Pointer to Memory Array; an address signal change controls the Memory Array operation while W and R signals determine the mode of this operation,

C - a set of control signals coming from the control circuit to Stack Pointer.

Introduce E signal denoting the state of W and R inputs, so

E = W&R. Then the general specification of stack behaviour can be specified by the signal graph (Fig.1,b).

2.2. Stack Pointer

When choosing or designing the logic circuit of Stack Pointer, one major requirement must be satisfied - the circuit must be simple as much as possible, maybe at the cost of increased number of external control signals and complication of the circuits controlling by these signals. An example of such a Stack Pointer is given in Fig. 2. The Stack Pointer circuit basis is a multiphase flip-flop from NOR gates. Stable states with an error of correct interleaving of gate states are possible in this flip-flop. For example 0101...01001010...10. The shift of a pair of neighboring states 00 is controlled: for left shift - forced translation of the left gate of pair 00

to the state 1 (00 (10);

for right shift - forced translation of the right gate of pair 00

to the state 1 (00 (01).

To prevent a through shift the control shift signals are divided into even De (DOWNeven) and Ue (UPeven) and odd Do (DOWodd) and Uo (UPodd). The gates generating address signals Ai are controlled oy the same shift signals. (Note that the use for that of independent control signals somewhat simplifies the implementation of Stack Pointer, but we shall not consider here this question.)

2.3. Control automaton

A control automaton generates control signals of Stack Pointer in response to W and R signals. In principle, the behaviour specification on this automaton describes stack interaction with environment.

The behaviour of stack, in its content, is determined by Stack Pointer behaviour in the following way:

- if a write operation is followed by a repeat write operation, an address generated by Stack Pointer shifts to one UP position;

- if a write operation is followed by a read operation, Stack Pointer generates the same address as in the preceding step;

- if a read operation is followed by a repeat read operation, an address generated by Stack Pointer shifts to one DOWN position;

- if a read operation is followed by a write operation, Stack Pointer generates the same address as in the preceding step.

Taking into account the partitioning of Stack Pointer positions into even and odd ones, the control automaton behaviour is specified by Mealy automaton (Fig. 3). The automaton states correspond to the following situations:

SwSe - even position write;

SwSo - odd position write;

SrSe - even position read;

SrSo - odd position read.

Draw attention to the fact that the automaton under consideration, from the viewpoint of its formal specification, is synchronous and hence calls for time structuring. This structuring can be achieved, at the cost of handshake with environment (standard for four-phase discipline for self-timed structure). Thus we are confronted with a problem of search for self-timing implementation of a synchronous Mealy automaton. By taking into account an essential property of Mealy automaton - output signals are linked with the arcs denoting change of states, it is natural to use Master-Slave Flip-Flop, as the basic circuit representing the automaton states.

Fig. 4,a shows a flip-flop for (Sw,Sr) variable and gates generating signals in transitions SwSo(SrSo and SwSe(SrSe.

According to the above described algorithm for address generation, the signal graph of stack behaviour and the circuit in Fig.4a, one can construct a signal graph demonstrating the independence of behaviour from gate delays on the automaton transitions under consideration (Fig. 4,c).

Fig.4,b shows a flip-flop for (Se,So) variable and gates generating signals in transitions SwSe(SwSo and SrSe(SrSo. The condition of these transitions is F = WSr + RSw = 0.

Similarly to the transitions on (Sw,Sr) flip-flop, one constructs a signal graph demonstrating the independence of stack behaviour from gate delays on the automaton transitions under consideration (So,Se) - Fig. 4,d.

By uniting the output functions in transitions one obtain

De = ((YeSoSw + YrSwSe),

Do = ((YoSeSw + YrSwSo),

Ue = ((YeSoSr + YwSrSe),

Uo = ((YoSeSr + YwSrSo).

It is not difficult to understand how the output functions are implemented on the arcs retaining state (there are no such arcs in our example) .

It is natural that a real device design calls for some additional efforts associated with restrictions on gate fan-out, delay optimization, etc. It may be found, from the viewpoint of load distribution, that it will be worthwhile to partition U and D signals not into two but three or more outputs, however, all this is beyond the scope of the present statement and does not change the general approach.

3. Discussion of the results

The procedure we used above is as follows: we decomposed the device into two blocks - a control circuit described as a finite-state automaton and a self-timed device itself. The similar approach is not a methodological novelty. It will suffice to recall memory and the logical circuit in the finite-state machine structure, registers and the control circuit, when using the language interregister transfers, an operational and control devices in the processor, and so on. Decomposition is not a formal procedure, it is based on our ideas of how a device being designed must function, on our experience and, if desired, on our likings for these or those types of devices. Another sti ing reason to use this or that type of decomposition is a possibility of using in different blocks a variety of specification languages and various synthesis (design) methods that are preferable to us, proceeding from these or those out-of-model representations. With all obvious successes in the development of formal design methods, successes in the development of theory, highly effective design was and remains art using the facilities of formal support, or at least the systems of design use and must use , to a considerable extent, the art of the designer. We hope the reader forgives us for these truisms.

Actually in the stack design we introduced a device matching the interface of Self-Timed Stack itself and the environment interface, and specified the algorithm for interfacing in the language of finite-state machines. Thus the design problem of Self-Timed Device with external inputs reduces to the specification of an interface automaton the self-timed implementation of which is carried out by standard procedure. In so doing, we note again that practically all the known synthesis procedures of self-timed devices with external inputs use the conversion procedure of this device to an autonomous one. This procedure is unfolding (linearization) of the behaviour specification to all possible states of interface. The above considered procedure provides the compact description for this specification. One should draw attention to the following fact. Whenever we linearize a signal graph, a change diagram or transition diagram, there arise a question of completeness of this unfolding. In order not "to lose" any situations we have to dispose of a tool providing the representation of all possible interface situations. The used automaton approach is, in fact, oriented to solving this problem. Evidently it is sufficient (but not necessary) for unfolding to pass over all automaton graph arcs. In principle, the trarsition from automaton description to a standard behaviour specification is evident. A special question is simplification of such a specification. However, as we have already constructed the automaton specification of interface it is worthwhile to use the above stated approach.

The above stated does not pretend to the solution of the problem. Our aim was to call attention to an arising possibility and to demonstrate its efficiency by an example.

References

1. Varshavsky V., Kishinevsky M., Marakhovsky V. et al. Self-timed Control of Concurrent Processes - Kluwer Academy, Publishers Group, 1990. - 428 pp. (Russian edition - 1986).

2. Varshavsky V.I. Hardware support of parallel asynchronous processes. Helsinki University of technology, Digital Systems Laboratory. Series A: Research Reports; No 2; Sept. 1987

3. Chu T.A. A Design Methodology for VLSI Self-Timed Systems. - PhD. Thesis Dep.of EECS, MIT, 1987.

4. Chu T.A. On the model for designing VLSI asynchronous digital systems. - Integration. The VLSI Journal. - 1986.- Vol.4. - N2. - p. 99-113.

5. Varshavsky V.I., Kishinevsky M.A., Kondratyev A.Yu., Rosenblum L.Ya., Taubin A.R. Models for specification and analysis of processes in asynchronous circuits. Izvestiya AN SSSR. Techicheskaya Kibernetika (USSR), 1988. - N 4.- p. 137-142 (in translation: Soviet. Journal of Computer and Systems Science.-1989, Vol. 26, No 2.- p. 61-76.)

6. Kishinevsky M.A., Kondratyev A.Yu., TaubinA.R, Varshavsky V.I. Concurrent Hardware. The Theory and Practice of Self-Timed Design, to be published by J. Wiley & Sons, 1993.

7. Varshavsky V.I. "Aperiodic machines with Self-Timing". In: Discrete Systems: Proc. IFAC Symposium, Riga, 1974, Vol. 1, Zinatne, Riga. USSR, 1974, pp.9-25.

8. Astanovsky A., Varshavsky V., Marakhovsky V. et al. Aperiodical Automata /Ed. by V.Varshavsky.- Moscow: Nauka, 1973. - 424 pp. (In Russian).

9. Chu T.A. Synthesis of Hazard-Free Control Curcuits from Asynchronous Finite State Machine Specifications, in Proceedings of "Tau 92: 1992 Workshop on Timing Issues in the Specification and Synthesis of Digital Systems". Princeton University, March 18-20, 1992, 10 pp.

10. David I, Ginosar R., Yoely M. Implementing sequential machines as self-timed circuits.- IEEE Trans. on Comput. - 1992. - V. 41, N 1, p. 12-17.

11. Ebergen J.C., Gingras S. An asynchronous stack with constant response time. - 1992 (unpublished manuscript).

12. Josephs M.B, Udding J.T. The design of a delay-insensitive stack. In: Jones G., Sheeran S. (eds.). Designing correct circuits. Workshops in Computing, 1990, pp. 132-152, Springer-VerIag.

13. USSR Patent Certificate No 1365129, ICI G 11c 11/40. Memory device from MOS transistors / V.I.Varshavsky, N.M.Kravchenko, V.B.Marakhovsky et al. - 1988. The Inventions Bulletin No 1.

14. USSR Patent. Certificate No 1474738, ICI G 11c 11/34. Memory device / V.I.Varshavsky, N.M.Kravchenko, V.B.Marakhovsky et al. - 1989. The Inventions Bulletin No 15.

