
 Abstract: This paper presents a novel variable-latency multiplier architecture, suitable for

implementation as a self-timed multiplier core or as a fully synchronous multi-cycle multiplier core.

The architecture combines a 2nd order Booth algorithm with a split carry save array pipelined

organization, incorporating multiple row skipping and completion-predicting carry-select final

adder. The paper reports the architecture and logic design, CMOS circuit design and performance

evaluation. In 0.35 µm CMOS, the expected sustainable cycle time for a 32-bit synchronous

implementation is 2.25 ns. Instruction level simulations estimate 54% single-cycle and 46% two-cycle

operations in SPEC95 execution. Using the same CMOS process, the 32-bit asynchronous

implementation is expected to reach an average 1.76 ns throughput and 3.48 ns latency in SPEC95

execution.

I. INTRODUCTION

Fast integer multipliers are a key topic in the VLSI design of high-speed microprocessors. Recent results

have shown that through a careful full-custom CMOS design a 54x54 bit multiplication in less than 3 ns is

possible [21]. However, with commonly available CMOS processes, micro-architectures with 2 ns cycle time

are commercially available [28]. As a result, due to the registers’ setup and hold times, even a fast 32 bit

multiplication may not fit in a single cycle, and the design of pipelined multi-cycle multipliers is a common

design choice to avoid the whole microarchitecture be limited by a relatively slow multiplier.

Data dependency always puts a limitation to the throughput of pipelined arithmetic units [22], due to idle

cycles between consecutive dependent operations. To overcome this, synchronous variable-latency pipelined

addition units have recently been proposed in DSP industrial design [30]. A variable latency unit operates as

a normal pipelined unit, but for most operands it can complete its operation in a single cycle, thus avoiding

idle cycles insertion and improving the average throughtput. A synchronous signal flags in which cycle the

operation has completed. A more aggressive implementation of this idea is inherent in asynchronous design,

with self-timed units capable of an average response faster than the worst case [6][9][14] [25][29][39][52].
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In a self-timed arithmetic unit, a totally asynchronous completion signal flags in which instant the operation

has completed. A practical problem of such a totally asynchronous unit is the interface with a synchronous

microprocessor architecture, due to the metastability effects of signal synchronization [2]. This fact has

given an impulse to the design of totally asynchronous microarchitectures, where important results have

already been achieved [16][17][43][44][47][48]. While conceptually similar, synchronous variable-latency

units and self-timed units substancially differ in their architecture and VLSI design1.

Though variable-latency multiplication algorithms are historically well known (e.g. shifting over zeros after

Booth encoding [22][4]), modern high-speed VLSI synchronous implementations have addressed fixed-time

multipliers [19][21], for they best fit the conceptual design of a synchronous, fixed-latency instruction set

architecture [22]. In fact, variable latency is present in some non-pipelined multi-cycle multiply units based

on an iterative sequential algorithm, targeting low-cost CPUs [35]. Another example of this approach is the

8-bit multiplier recently presented in [45]. Synchronous variable-latency has also been proposed for addition

[32] and implemented in a high-speed pipelined VLSI adder [30]. No specific work has addressed

synchronous variable-latency multipliers targeting high speed.

On the other hand, several research works have addressed asynchronous VLSI multipliers. An early example

of the variable latency concept with an asynchronous implementation is in [36]. Some studies address serial

asynchronous multipliers, with a low speed target [13][46], while several studies target asynchronous (i.e.

unclocked) design but not variable latency [1][33][7][11][38] (with the goals of reducing power

consumption, avoiding clock distribution, etc.), or they partially implement variable latency, usually in the

final carry propagation adder of an array multiplier [31][37][10]. A few works do primarily address variable

latency [40][20][26]: in [40] and [20], the target is not absolute speed, but rather the trade off between area,

power and speed. In [26], Kearney and Bergmann present a design with conceptual similarities with this

work, i.e. variable-latency carry-save array and variable-latency final adder.

This paper presents an integer (2’s complement negative coding) pipelined multiplier architecture, which

combines several algorithmic and design techniques to allow the VLSI implementation as a self-timed

multiplier core or as a fully synchronous variable-latency multiplier core. The synchronous version is

essentially a novel design, while the asynchronous version is a substancial evolution of [26] in the

architecture (use of Booth encoding, different data-dependent carry-save array, different final adder) with

additional differences in the implementation (different micropipeline scheme, full-custom core vs cell-based

design). The goal of the proposed designs is worst-case speed comparable with the fastest existing

multipliers, and appreciably  better performance in the average case. The paper reports a comprehensive
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instruction level analysis on the statistical effectiveness of the variable latency, in conjunction with circuit

level simulations, showing the expected effectiveness of the design.

II.  BACKGROUND ON PARALLEL MULTIPLIER ARCHITECTURE

The basic add-shift multiplication algorithm of two n-bit integers A and B is expressed by the following

pseudo-code:

for  j = 0 .. n-1 loop

    product <= product + A AND bj ;

    A <= 2*A ;

end loop ;

where bj is the jth bit of B and the notation A AND bj indicates the bit vector resulting from the AND of

each bit of A with the bit bj.

An array multiplier can take advantage of Carry Save Adders (CSA) in order to avoid the carry propagation

at each step of the add-shift loop [22]. Fig. 1 sketches the structure of a CSA array multiplier; each row of

the array is composed of full adders (half-adders for the first row) with no horizontal carry propagation,

while the last row at the bottom is a carry propagation adder (CPA) that resolves the carry propagation to

obtain the final sum. In Fig. 1 the shift operations among consecutive CSA rows are implicit, to keep the

picture simple. The CSA array, having O(n) delay, can be transformed into a radix-3 tree structure with

O(log n) delay, without affecting the correctness of the final result (Wallace tree, [22]). The irregular

structure of such tree can be overcome by introducing 4:2 compressors [49], i.e. 4-input 2-output adders

that allow a more regular radix-2 tree. Another possibility is to split the CSA array into a pair of arrays that

operate in parallel [22], thus obtaining a regular rectangular structure mostly employing simple full adders,

but only reducing the CSA delay to O(n/2).

                                                                                                                                                                                                     
or in ns). This causes no ambiguity for the scope of this paper.

Table 1

bj+1 bj bj-1 operation sj dj pj mj
0 0 0 no op. 0 1 0 0
0 0 1 + A 1 0 1 0
0 1 0 + A 1 0 1 0
0 1 1 + 2A 0 1 1 0
1 0 0 - 2A 0 1 0 1
1 0 1 - A 1 0 0 1
1 1 0 - A 1 0 0 1
1 1 1 no op. 0 1 0 0



Independently of the CSA structure, the number of partial products to be added together can be reduced by

applying 2nd order Booth encoding to the multiplier operand [22][4]. 2nd order Booth encoding exploits the

presence of 1’s or 0’s in the multiplier operand to merge two additions in a single operation, as specified in

Table 1. The encoding in Table 1 is applied for j = 0, 2, 4, …, n – 2 , thus reducing to n/2 the number of

partial products to be considered. Table 1 shows a specific implementation of the encoding bits, sign select

Booth encoding [19]. Essentially, the bits pj and mj indicate whether a “plus” or a “minus” operation has to

be performed, while sj and dj indicate whether to use a “single” or “doubled” value of A as the partial

product. Following that implementation, the add-shift pseudo-code multiplication algorithm becomes

for  j = 0 .. n-2 step 2 loop

    product <= product + (A AND pj  –  A AND mj) AND sj

                             +(2*A AND pj  –  2*A AND mj) AND dj ;

    A <= 4*A ;

end loop ;

In a CSA array implementation of the above algorithm, a single set of encoding  bits pj, mj, sj and dj controls

a CSA row operation, except for the first row of the array which needs two sets of encoding bits because it

directly processes two partial products.

Finally, pipeline registers can be inserted in the multiplier data-path to improve the throughtput.

III.  ARCHITECTURE AND LOGIC DESIGN OF THE PROPOSED MULTIPLIERS

The proposed architecture is based on sign select 2nd order Booth encoding and a split CSA array. For n-bit

operands there are n/2 partial products, i.e. (n/2)(1/2) – 2 rows of full-adders in each of the two CSA arrays

(Fig. 2). A 4:2 compressor is used to merge the results of the split CSA array, with the view of allowing a

regular layout, though this work does not focus on layout design. Each row of full-adders is conventionally

numbered with the index j of the Booth encoding bits controlling that row, thus starting with j = 4 for the

array on the left, and j = n/2 + 4 for the array on the right. Such row numbering convention simplify the

logic equations in the following.

A straightforward fixed-latency implementation of the scheme in Fig. 2 has the following delay components:

Delay = DBooth-enc + DBooth-sel + Dha + (n/4 – 2) Dfa + D4:2 + Dcpa,

where the delay contributions are: DBooth-enc: Booth encoding logic producing the encoding bits pj, mj, sj, dj;

DBooth-sel : logic that selects the operation of each CSA row according to the encoding bits; Dha : half-adder

(CSA row); Dfa : full-adder (CSA row), D4:2 : 4:2 compressor; Dcpa : final CPA. The latter is intended as a

fixed-latency adder.



In order to enforce a variable (and shorter) latency in the CSA array operation, the proposed architecture

includes a set of skip signals. Referring to one of the two CSA arrays, each skiphk signal indicates whether

all of the consecutive CSA rows numbered h, h+2, h+4, … k have to perform no operation. The skiphk

signals express the possibility of bypassing not only a single CSA row in case of no operation, but also

multiple consecutive CSA rows.

Fig. 3 illustrates the detail of the skip operation in the CSA rows. The Booth selector chooses among the

possible operations to be performed, while the skiphk signals force the data to bypass the CSA rows that

perform no effective operation (i.e. should add a zero). The bypass operation occurs in a single multiplexer

delay even for multiple row bypass, thanks to the multiple skiphk signals covering all the consecutive row

bypass combinations.

In  [26], Kearney and Bergmann have shown that bypassing a CSA row in an array multiplier implies the

cost of forwarding to the final CPA an unresolved carry+sum bit pair for the least significant bit of the row,

instead of a single final-product bit. In a non-Booth-encoding architecture, this causes the final CPA size to

be 2n bits instead of n bits required by a conventional CSA array [26]. However, in a Booth-encoding

architecture a 2n bit final CPA is anyway needed, to manage the extra carries produced by 2’s complement

Booth subtractions [21], so that introducing variable-latency does not increase the size of the final CPA. Fig.

3 details the mechanism used to exploit this property, which distinguishes the proposed architecture from

previous “row-skipping” CSA arrays: a non-skipped row may forward the least significant carry caused by a

2’s complement subtraction; a skipped row forwards the least significant carry coming from the preceding

row.

The logic design of the skiphk signal generation is a peculiar aspect of the proposed architecture and deserves

special attention. From Table 1, the expression of the signals skiphk , h ≤ k, is

skiphk = (~ph ⋅ ~mh) ⋅ (~ph+2 ⋅ ~mh+2) ⋅ … ⋅ (~pk ⋅ ~mk).

where the symbol ~ indicates logic inversion.

For the operation to be efficient, it is necessary to generate the skiphk signals in parallel, rather than

iteratively (such as skiphk = skiph,k−1 ⋅ ~pk ⋅ ~mk). Moreover, to have the fastest generation of the skiphk

signals and to avoid increasing the fan-out of the Booth encoders, it is favorable to obtain the skiphk signals

directly from the bits of the operand B, rather than from the Booth encoders output ph and mh. The logic

expression of a generic skiphk signal becomes (from Table 1):

skiphk =

(~bh+1 ⋅ ~bh ⋅ ~bh-1 + bh+1 ⋅ bh ⋅ bh-1) ⋅

(~bh+3 ⋅ ~bh+2 ⋅ ~bh+1 + bh+3 ⋅ bh+2 ⋅ bh+1) ⋅



 …

(~bk+1 ⋅ ~bk ⋅ ~bk-1 + bk+1 ⋅ bk ⋅ bk-1),

which, by De Morgan transformations, can be reduced to

~skiphk =

(~bh+1 ⋅ bh + ~bh+1 ⋅ bh-1 + bh+1 ⋅ ~bh + ~bh ⋅ bh-1 + bh+1 ⋅ ~bh-1 + bh ⋅ ~bh-1) +

…

(~bk+1 ⋅ bk + ~bk+1 ⋅ bk-1 + bk+1 ⋅ ~bk + ~bk ⋅ bk-1 + bk+1 ⋅ ~bk-1 + bk ⋅ ~bk-1) .

This NOR-of-AND expression allows to produce the skiphk bits concurrently with the Booth encoding bits

mh and ph. On the other hand, it obviously introduces redundant logic.

By some algebraic passages we can observe that the number of skiphk signals to detect all the combinations

of consecutive rows among x rows is x(x+1)/2. For some CSA array sizes it could be impractical to generate

the complete set of skiphk signals, because of the interconnection complexity (see Fig. 3). In a 32×32 bit

implementation, a full-bypass architecture would need 26 skiphk signals and 8-input multiplexers on the final

CSA row. Such complexity is likely to be useless because the first CSA row consists of relatively fast half-

adders, and because a full skip of both CSA arrays is reasonably very rare ( 0.2514 = 4⋅10-9 probability,

assuming uniform operand distribution). One possibility is to partition a CSA array into blocks of limited size

that represent the maximum number of simultaneously bypassable CSA rows. In the proposed 32×32 bit

implementation, both 7-row arrays are divided into two blocks of 3 bypassable rows each, plus a non-

bypassable row of half-adders (first-row). Actually, this choice limits to 6 skiphk signals the complexity of

each bypassable block; alternatively, three 2-row blocks would vanish most of the potential of multiple row

skipping, while a 4-row block followed by a 2-row block would result in a very unbalanced block

complexity.

For the final CPA adder, the proposed architecture employs a Carry Select (CS) scheme [5], whose data

dependent completion time has been investigated and proven in previous works [15][29][30]. Specifically,

the size of the CS groups in the final 64-bit CPA follows the scheme 8,8,8,8,8,6,6,5,4,3 bits, considering the



most significant digit on the left. With this sizing choice, after a delay equivalent to 7 full-adders the output

carries of the 3-, 4-, 5- and 6-bit groups are surely valid, while the 8-bit groups may have their output carry

valid (anticipated carry [15]). In that case, an early CPA completion occurs. In the worst case, an additional

delay of 5 multiplexers is needed to complete the carry selection chain. The CPA sizing choice aims at

having a similar latency variation (in nanoseconds) in the CPA and in the CSA array.

The resulting multiplier latency is a generic expression of the form

Delay = DBooth-enc + DBooth-sel + Dha + N(B)⋅(Dfa + Dmux) + b⋅Dmux + D4:2 + Dcpa(A,B),

where Dmux is the delay of a multiplexer, b is the number of bypassable blocks of rows in a CSA array, N(B)

is the actual number of partial products added/subtracted by the two CSA arrays (actually the maximum

between the two). The notations N(B), Dcpa(A,B) indicate dependency on the operand values. In particular,

the formula assumes the overlapped skiphk signal computation, i.e. Dskiplogic < DBooth-enc + DBooth-sel + Dha ,

where Dskiplogic is the time to generate the skiphk signals.

The functionality of the proposed architecture scheme has been validated through a bit level executable

algorithmic model [24].

IV.  VLSI DESIGN OF SYNCHRONOUS VARIABLE-LATENCY IMPLEMENTATION

Fig. 4 shows the block diagram of the synchronous 32-bit implementation of the variable latency

architecture. Each of the two CSA arrays includes two 3-row bypassable blocks. Six skiphk signals operate

on each bypassable block.

The multiplier is pipelined by a register at the output of the split CSA array. Considering the worst case

delay, the approximate critical paths of the two stages are:

Delay_1st|worst = DBooth-enc + DBooth-sel + Dha + 6 Dfa + 6 Dmux ,

Delay_2nd| worst = Dmux + D4:2+ Dcpa ≈ Dmux + D4:2 + 7 Dfa + 5 Dmux ;

where the carry propagation and the sum generation in a full-adder are both indicated as Dfa for simplicity.

The multiplier can complete in either one or two clock cycles, depending on the actual operand values. To

complete the operation in one cycle, a multiplexer allows the partial results of the CSA array to override the

pipeline register in case there is a chance to traverse the whole multiplier logic path in a single cycle.

To implement single-cycle/two-cycle completion prediction, we have to establish a set of conditions leading

to a total latency roughly equivalent to half the worst case total latency, and then size the VLSI cycle time to

fit such reduced latency. In the proposed implementation, the conditions for having the result ready after one

cycle are that each of the CSA arrays processes at most two partial products, and the second pipe stage is

not busy (processing a previous 2-cycle multiplication), and all of the 8-bit CS groups in the final CPA



anticipate their carries. When all those conditions are met, the actual critical path of both stages together is

nominally Delay_singlecycle = DBooth-enc + DBooth-sel + Dha + 2 (Dfa + Dmux) + 2 Dmux + Dmux +D4:2 + 7 Dfa +

Dmux. The conditions are defined with the aim of a relatively easy logic detection of them; the VLSI

implementation of the multiplier must take care that the single-cycle-operation delay is roughly comparable

with the worst case delays of the two single pipe stages (Delay_1st|worst and Delay_2nd|worst). The VLSI cycle

time will be sized accordingly, as shown later.

Functionally, the signal busy detects if the second pipe stage is busy, the signals unresolved-carryi detect if

the CPA cannot anticipate its internal carries, the signals no-skipi detect CSA rows that cannot be skipped,

and the onecycle signals flags if the operation is completed in the current cycle. The “>2” blocks check if

there are more than two partial products processed in either CSA arrays, while the “>0” block (OR

operator) detects if there is at least one 8-bit CS groups in the final adder with unresolved carry.

Supposing the operands are presented at the multiplier inputs at the i th clock falling edge, in case the result is

ready in one cycle the signal onecycle is high at the i+1th clock falling edge; otherwise the onecycle signal  is

low, and the result is ready at the i+2th rising clock edge. It is important that the onecycle signal is

synchronous with the clock, i.e. it is stable within the current clock cycle, and is active only in case of early

completion of the multiplication.

Fig. 5 shows the full-custom VLSI design of the “skip logic” for a 3-row block. All the 3-row blocks in Fig.

4 and the corresponding “skip logic” are identical to this. Fig. 6 shows the VLSI design of the final logic

producing the onecycle signal. Fig. 7 details the VLSI design of a carry select block in the carry-completion-

sensing CPA. All the logic in the multiplier is designed in dynamic “domino” CMOS style, with inverters

between cascaded logic blocks [50]. Transistor sizing is accomplished according to the “logical effort”

optimization methodology [42], though with simplifying assumptions concerning circuit branching.  In

accordance with the logical effort method, the number of CMOS stages in the critical path of the main

circuit blocks has been optimized. In particular, in the “skip logic” circuits (Fig. 5), there are 2 static

inverting buffers on each input bit (not shown), and the NOR-of-AND function is split into 2 domino stages.

In Fig. 5, the critical path is from the b3…b9 input bit to the skip48 output signal. In Fig. 6, the critical inputs

of the logic circuit are the unresolvedj bits, because they come from the carry select blocks in the final CPA

and therefore are later than the no-skiph signals, which directly come from the skip logic (Fig. 4). The critical

delay condition for the signal onecycle occurs when only 2 no-skiph are active (i.e. the CSA array processes

2 partial products), but there is some unresolvedj active. The resulting critical delay of the whole logic that

produces the signal onecycle is approximately Donecycle = DBooth-enc + DBooth-sel + Dha + 2 (Dfa + Dmux) + 2



Dmux +  Dmux +D4:2 + 7 Dfa + Ddetect, where Ddetect is the delay of the circuit in Fig. 6 from the unresolvedj bits

to the onecycle output signal.

The signals in the circuits are pre-charged high during the low clock-half-cycle, except for the busy signal

which is ready immediately after the falli ng edge of the clock because it is produced by the falli ng-edge-

triggered register.

The following timing parameters, augmented by the register and precharge overhead,  define the cycle time

sustainable by the multiplier: the worst-case Delay_1st |worst and Delay_2nd |worst, the delay in case of single

cycle operation Delay_singlecycle, and the prediction delay Donecycle.

V. VLSI DESIGN OF SELF-TIMED VARIABLE-LATENCY IMPLEMENTATION

The scheme of the variable-latency asynchronous multiplier is based on the micropipeline paradigm [41]. The

multiplier is designed as a two-stage micropipeline interfaced with the external environment through a pair

of request/acknowledge 2-phase signals at the input and another pair at the output of the multiplier. The

scheme uses double edge triggered memory elements, realized according to [51], which reduce the

micropipeline interconnections and switching activity.

Fig. 8 shows the micropipeline implementation. The essential feature of the design is that the delay of each

of the two micropipeline stages is data dependent, thanks to the skiphk signals in the CSA and the

completion-sensing CPA. To this end specialized circuits are responsible for producing the completion

signals of the CSA arrays and of the CPA. For the CSA array, a dummy logic path controlled by the skiphk

signals reproduces the data-dependent logic levels of the two CSA arrays. The signals Z1 and Z2 switch

nominally at the same time as the corresponding CSA array output are ready. This time depends on the

actual data values, through the skiphk signals. For the final CPA, the completion signal is generated by a

speculative completion technique [52], i.e. by selecting one of two delays for the completion signal: a shorter

delay in case no unresolvedi signal is active, a longer delay in the opposite case. Double edge-triggered

monostable elements provide the precharge signal for the dynamic logic gates of the multiplier. In both pipe

stages a programmable delay element is inserted, to compensate for the pre-charge time and to adjust

possible derating factors in the control signal delay, as already shown in [14] and [10].

In the micropipelined implementation, it is neither necessary to provide the logic to override the pipeline

register, nor to check if the second stage is busy when the first stage’s result is ready, because the register

control signal is governed by the data-dependent hand-shaking of the two pipe stages. So the elastic

behavior of the micropipeline automatically implements the variable response time of the multiplier.



All the data-path components have the same circuit implementation as in the synchronous version, except for

the double-edge-triggered pipeline register.

The average delays of the two variable-latency stages are nominally expressed by

Delay_1st|avg =

DBooth-enc + DBooth-sel + Dha + app⋅ (Dfa + Dmux) +2 Dmux,

Delay_2nd| avg =

D4:2+ E{Dcpa }   ≈  D4:2 + 7 Dfa + pncp⋅ Dmux + (1 - pncp) ⋅ 5 Dmux;

where app is the average number of non-zero partial products to be added/subtracted by the split CSA array

and pncp is the probability that the final CPA needs no carry propagation, because all of the 8-bit CS groups

anticipate their output carry.

The timing parameters that define the performance of the micropipeline multiplier implementation are the

worst and best delay of the stages, and their average value Delay_1st|avg and Delay_2nd| avg, to obtain the

multiplier throughput and latency.

VI.  STATISTICAL INSTRUCTION LEVEL RELEVANCE OF VARIABLE LATENCY

The design of a variable latency unit should be supported by evidence that its average operation latency in a

real application is shorter than the worst-case latency. As Booth encoding affects the distribution of 0’s and

1’s in the operands, we need a direct analysis of the bit-level behavior of the specific architecture executing

real operations. Here I present a study based on simulating a MIPS-like instruction set architecture, through

an instrumented version of the Simplescalar tool set [8], considering two multiplication instructions: MULT

(32-bit integer multiply) and MULTU (unsigned 32-bit integer multiply). The MULTU instruction is less

significant as it occurs either rarely or never at all. Operand traces where extracted and used with a bit-level

C-language model of the variable-latency architecture [24], obtaining the statistical parameters in Tables 2

and 3.  Table 2 refers to a sequence of multiplications with theoretical standard distributions of the operands.

More significantly, Table 3 refers to the execution of the SPEC95 benchmark suite with reference input files

[23]. Tables 2 and 3 report the parameters app , pncp and  the parameter 1cyc, i.e. the probability of meeting

the conditions for single-cycle operation in the synchronous implementation.



VII.  PERFORMANCE RESULTS

Fig. 9 shows a sample of the HSpice level 49 simulation of the synchronous multiplier referring to a 0.35 µm

CMOS process, assuming typical operating conditions. The mask layout of the circuits has not been fully

designed; however, long metal line parasitic capacitances were manually coded into Spice netlists, based on

a hypothetical layout of the circuits. In all the circuits, no serious charge sharing problems occur, probably

because the capacitance of the internal nodes that may cause charge redistribution effects are actually small,

compared to the load capacitance and the parasitic capacitance of the output nodes. In Fig. 9, from left to

right, first a two-cycle multiplication case and then a single-cycle case are shown. Data values are sampled

by the registers on the falling edge of the clock. Register delay is overlapped with the subsequent precharge

phase of the dynamic combinational circuits.

Table 4 shows the delay characterization obtained for the relevant circuit modules of the multiplier; in the

asynchronous version, pre-charging starts after the precharge control signal has traversed a proper buffer

Table 2

instruction -> MULT MULTU
parameter -> app 1cyc pncp app 1cyc pncp
Uniform ops 4.51 0.01 0.40 4.50 0.01 0.39

Gauss ops 2.90 0.02 0.03 2.99 0.01 0.03
Poisson ops 3.89 0.02 0.09 3.90 0.02 0.09

Table 3

instruction -> MULT MULTU
parameter -> app 1cyc pncp app 1cyc pncp

applu  1.65  0.17  0.17 1.81 0.05  0.06
compress  0.06  0.95  0.95  --  --  --

gcc  1.48  0.45  0.79  --  --  --
go  0.07  0.97  0.97  --  --  --

ijpeg  3.79  0.00  0.00  --  --  --
li  0.09  0.92  0.92  --  --  --

m88ksim  0.03  0.97  0.96 6.00  0.00  0.00
mgrid  1.11  0.00  0.00 1.86  0.23  0.35
swim  0.32  0.88  0.88 1.95  0.14  0.17

tomcatv  0.20  0.80  0.80  --  --  --
turb3d  1.20  0.00  0.00 2.67  0.24  0.40
vortex  1.55  0.30  0.30 5.99  0.00  0.35
wave5  0.78  0.65  0.65  --  --  --

AVERAGE  1.01  0.54  0.57 0.38  0.11  0.22



tree in order to drive all the dynamic circuits in the pipe stage; in the synchronous version, clock buffering

delay is overlapped with circuit operation, and pre-charging starts right at the falli ng edge of the clock

signal. For this reason, in the self-timed implementation the actual time taken by pre-charging is longer.

Power dissipation has not been thoroughly investigated; as in any parallel multiplier, the switching activity is

strongly dependent on the sequence of input operands. A rough estimate based on the transistor overhead

may lead to assume less than 20% power dissipation overhead with respect to a fixed-latency array

multiplier architecture.

A. Synchronous implementation

The cycle time limit for the synchronous implementation results to be the completion prediction delay

Donecycle of 1.84 ns. Considering the the hold time for the precharge signal, the expected cycle time

sustainable by the multiplier is nominally 2.25 ns (with asymmetric clock shape). The area overhead can be

estimated in terms of transistor count with respect to the implementation of the same synchronous multiplier

architecture with fixed latency: the total transistor count of the proposed implementation is 22609, and the

transistor count of all the logic dedicated to variable latency is 3329. The overhead is approximately 17%.

The delay overhead due to the variable latency management is essentialy due to the multiplexers inserted in

the CSA arrays. Referring to Fig. 4, circuit simulation shows that the sum of the delays of the pass-transistor

multiplexers causes a 0.32 ns overhead in the first (and slowest) pipeline stage. Thus a fixed-latency

implementation of the proposed architecture is expected to sustain 1.75 ns cycle time and 3.50 ns fixed

latency.

Table 4

       synchronous         [ns]          self-timed         [ns]
Delay1st|worst 1.65 Delay1st|worst 1.65
Delay2nd|worst 1.23 Delay2nd|worst 1.20
pipe register 0.29 pipe register 0.32

precharge hold time 0.40       precharge delay   0.78
Dskiplogic 0.55 Dskiplogic 0.55

DBooth_enc 0.34 DBooth_enc 0.34
DBooth_sel 0.19 DBooth_sel 0.19

Dha in 1st CSA row 0.08 Dha in 1st CSA row 0.08
Delay_singlecycle 1.83 Delay1st|best 0.76

Donecycle 1.84 Delay2nd|best 0.81
Dfa in CSA row 0.11

Dmux  in CPA 0.08



Fig. 10 shows a comparison with existing state-of-the-art synchronous 32-bit multipliers. The labels

“M·CORE”, “PIII”, “SA” and “PPC” refer to 33MHz M·CORE MMC2001 (incorporating a variable latency

multiplier), 600MHz PentiumIII, 206MHz StrongARM 1110 and 466 MHz PowerPC 750, respectively. The

label “NEC” refers to NEC’s ultra-fast 2.7 ns multiplier architecture reported in [21], here estimated for 32-

bit design instead of 54-bit. The original delay contribution reported in [21] are 0.53 ns Booth

encoders/selectors, 0.95 ns 4:2 compressor tree, and 1.22 ns 108-bit CarryLookahead CPA. Scaling the

compressor tree and the final CPA for 32-bit multiplier operands leads to an estimated 2.33 ns total latency

and 2.73 ns cycle time including pre-charge time.

Considering the 54% statistical probability of single-cycle operations in SPEC95 execution (Table 3), the

average expected latency of  the proposed multiplier remains slightly longer than NEC’s design, due to more

advanced circuit optimization and technology. As a whole, the expected-performance figures of the

synchronous variable-latency design are surely remarkable.

B. Self-timed implementation

From Table 4, the worst and best case latencies of the self-timed implementation result to be 4.41 ns and

3.13 ns, respectively, while the average delays of the two micropipeline stages referring to SPEC95

execution are

Table 5 – (n.a. = not applicable; N.A. = not available)

type SA PPC PIII NEC
M·CORE
(best lat.)

M·CORE
(worst lat.)

this work
(best lat.)

this work
(worst lat.)

variable-latency statistics
(SPEC95 multiplications) n.a. n.a. n.a. n.a. N.A. N.A. 54% 46%

latency [cycles] 2 3 4 1 2 18 1 2
latency [ns] 9.60 6.44 6.67 2.73 60.00 540.00 2.25 4.50

throughput [ns] 4.80 2.14 1.67 2.73 60.00 540.00 2.25 2.25
feature size [µm] 0.35 0.22 0.18 0.25 0.36 0.35

Table 6 – (source for performance of compared designs: [27])

type BFB SK KB this work

word size [bits] 16×16 16×16 16×16 32×32

latency [ns] 25.00 64.00 15.00 3.48

throughput [ns] 5.51 6.40 10.80 1.76

supply voltage [V] 5.00 5.00 5.00 3.30

feature size [µm] 1.20 1.00 0.60 0.35



Delay_1st|avg = 0.76 ns + 1.01(Dfa + Dmux) = 0.94 ns ,

Delay_2nd| avg = 0.76 ns + 0.57 Dmux + 0.43 ⋅ 5 Dmux = 0.98 ns.

The resulting approximate average latency of the whole micropipeline is 0.78 + 0.94 + 0.78 + 0.98 = 3.48

ns and the average throughput is dictated by the delay of the second stage, 0.98 + 0.78 = 1.76 ns. The

architecture is organized to overlap the pre-charge phase of the second stage with the propagation delay

through the micropipeline register.

The variable-latency complexity overhead in the self-timed implementation is similar to the synchronous

case, as the essential logic blocks are the same.

Fig. 11 shows a comparison with published asynchronous multipliers performance. The compared designs

are all 16-bit multipliers. The labels “BFB” and “SK” respectively refer to the fixed-latency self-timed

designs reported in [7] and [38], while the label “KB” refers to the variable-latency design reported in [26].

Technology parameters for all the designs are reported.

VIII.  CONCLUSIONS

The proposed architecture and VLSI design demonstrates that a variable latency multiplier, in either

synchronous or asynchronous implementations, can overcome the performance offered by fast fixed-latency

multipliers.

The presented design address the use of edge-triggered registers, to reduce the complexity of the register-

overriding logic design in the synchronous implementation and of the interconnection routing in the self-

timed implementation. Investigation of the performance impact of using latches may be an area of further

work. Similarly, further work may address the performance trade-offs of the number of pipe stages in the

self-timed micropipelined implementation.
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Temperature: 27.0

Fig. 9 - Spice simulation of the synchronous variable-latency
 multiplier CMOS implementation. Clock cycle borders are highlighted.
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