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Abstract: This paper presents a novel variable-latency multiplier architecture, suitable for
implementation as a self-timed multiplier core or as a fully synchronous multi-cycle multiplier core.
The architecture combines a 2 order Booth algorithm with a split carry save array pipelined
organization, incorporating multiple row skipping and completion-predicting carry-select final
adder. The paper reports the architecture and logic design, CMOS circuit design and performance
evaluation. In 0.35 um CMOS, the expected sustainable cycle time for a 32-bit synchronous
implementation is 2.25 ns. Instruction level simulations estimate 54% single-cycle and 46% two-cycle
operations in SPEC95 execution. Using the same CMOS process, the 32-bit asynchronous
implementation is expected to reach an average 1.76 ns throughput and 3.48 ns latency in SPEC95

execution.

|. INTRODUCTION

Fast integer multipliers are a key topic in the VLSI design of high-speed microprocessors. Recent resul
have shown that through a careful full-custom CMOS design a 54x54 bit multiplication in less than 3 ns i
possible [21]. However, with commonly available CMOS processes, micro-architectures with 2 ns cycle time
are commercially available [28]. As a result, due to the registers’ setup and hold times, even a fast 32 &
multiplication may not fit in a single cycle, and the design of pipelined multi-cycle multipliers is a common
design choice to avoid the whole microarchitecture be limited by a relatively slow multiplier.

Data dependency always puts a limitation to the throughput of pipelined arithmetic units [22], due to idle
cycles between consecutive dependent operations. To overcome this, synchronous variable-latency pipelir
addition units have recently been proposed in DSP industrial design [30]. A variable latency unit operates a
a normal pipelined unit, but for most operands it can complete its operation in a single cycle, thus avoidin
idle cycles insertion and improving the average throughtput. A synchronous signal flags in which cycle the
operation has completed. A more aggressive implementation of this idea is inherent in asynchronous desic

with self-timed units capable of an average response faster than the worst case [6][9][14] [25][29][39][52]
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In a self-timed arithmetic unit, a totally asynchronous completion signal flags in which instant the operatior
has completed. A practical problem of such a totally asynchronous unit is the interface with a synchronot
microprocessor architecture, due to the metastability effects of signal synchronization [2]. This fact ha
given an impulse to the design of totally asynchronous microarchitectures, where important results hav
already been achieved [16][17][43][44][47][48]. While conceptually similar, synchronous variable-latency
units and self-timed units substancially differ in their architecture and VLSI design

Though variable-latency multiplication algorithms are historically well known (e.g. shifting over zeros after
Booth encoding [22][4]), modern high-speed VLSI synchronous implementations have addressed fixed-tim
multipliers [19][21], for they best fit the conceptual design of a synchronous, fixed-latency instruction set
architecture [22]. In fact, variable latency is present in some non-pipelined multi-cycle multiply units based
on an iterative sequential algorithm, targeting low-cost CPUs [35]. Another example of this approach is th
8-bit multiplier recently presented in [458ynchronousariable-latency has also been proposed for addition
[32] and implemented in a high-speed pipelined VLSI adder [30]. No specific work has addressed
synchronous variable-latency multipliers targeting high speed.

On the other hand, several research wbeke addresseasynchronou¥/LSI multipliers. An early example

of the variable latency concept with an asynchronous implementation is in [36]. Some studies address ser
asynchronous multipliers, with a low speed target [13][46], while several studies target asynchronous (i.e
unclocked) design but not variable latency [1][33][7][11][38] (with the goals of reducing power
consumption, avoiding clock distribution, etc.), or they partially implement variable latency, usually in the
final carry propagation adder of an array multiplier [31][37][10]. A few works do primarily address variable
latency [40][20][26]: in [40] and [20], the target is not absolute speed, but rather the trade off between ares
power and speed. In [26], Kearney and Bergmann present a design with conceptual similarities with thi
work, i.e. variable-latency carry-save array and variable-latency final adder.

This paper presents an integer (2's complement negative coding) pipelined multiplier architecture, whicl
combines several algorithmic and design techniques to allow the VLSI implementation as a self-timec
multiplier core or as a fully synchronous variable-latency multiplier core. The synchronous version is
essentially a novel design, while the asynchronous version is a substancial evolution of [26] in the
architecture (use of Booth encoding, different data-dependent carry-save array, different final adder) wit
additional differences in the implementation (different micropipeline scheme, full-custom core vs cell-basec
design). The goal of the proposed designs is worst-case speed comparable with the fastest existi

multipliers, and appreciably better performance in the average case. The paper reports a comprehens

! For simplicity, this paper uses the term “latency” for both synchronous and asynchronous units, meaning the time tesatestidyr(either measured in cycles



instruction level analysis on the statistical effectiveness of the variable latency, in conjunction with circuit

level simulations, showing the expected effectiveness of the design.

Il. BACKGROUND ON PARALLEL MULTIPLIER ARCHITECTURE

The basic add-shift multiplication algorithm of twwsbit integersA andB is expressed by the following
pseudo-code:
for j =0 ..n-1loop

product<=product+ A AND b; ;

A<= 2*A:
end loop;
whereb; is thejth bit of B and the notatio® AND bj indicates the bit vector resulting from the AND of
each bit ofA with the bitb;.
An array multiplier can take advantage of Carry Save Adders (CSA) in order to avoid the carry propagation
at each step of the add-shift loop [22]. Fig. 1 sketches the structure of a CSA array multiplier; each row c
the array is composed of full adders (half-adders for the first row) with no horizontal carry propagation,
while the last row at the bottom is a carry propagation adder (CPA) that resolves the carry propagation t
obtain the final sum. In Fig. 1 the shift operations among consecutive CSA rows are implicit, to keep the
picture simple. The CSA array, havingrpdelay, can be transformed into a radix-3 tree structure with
O(log n) delay, without affecting the correctness of the final result (Wallace tree, [22]). The irregular
structure of such tree can be overcome by introdu¢iBgcompressor$49], i.e. 4-input 2-output adders
that allow a more regular radix-2 tree. Another possibility is to split the CSA array into a pair of arrays that
operate in parallel [22], thus obtaining a regular rectangular structure mostly employing simple full adders
but only reducing the CSA delay to 1ig).

Table 1
bj+1 bj bj-1| operation| sj dj pj mj
0 0O O no op. O 1 0 O
0 0 1 + A 1 0 1 O
0 1 0 + A 1 0 1 O
0 1 1 + 2A 0 1 1 0
1 0 0 - 2A 0O 1 0 1
1 0 1 -A 1 0 0 1
1 1 0 -A 1 0 0 1
1 1 1 no op. O 1 0 O

or in ns). This causes no ambiguity for the scope of this paper.



Independently of the CSA structure, the number of partial products to be added together can be reduced
applying2™ order Booth encodingp the multiplier operand [22][4]."2order Booth encoding exploits the
presence of 1's or O’s in the multiplier operand to merge two additions in a single operation, as specified i
Table 1. The encoding in Table 1 is appliedjfer O, 2, 4, ....n —2, thus reducing t@/2 the number of
partial products to be considered. Table 1 shows a specific implementation of the encodangnbdtslect
Booth encoding19]. Essentially, the bitg; andm indicate whether a “plus” or a “minus” operation has to
be performed, whiles and ¢ indicate whether to use a “single” or “doubled” valuefofs the partial
product. Following that implementation, the add-shift pseudo-code multiplication algorithm becomes
for j =0 ..n-2 step2loop

product<= product+ (A AND p; — AAND m) AND s

+(ZAND p; — 2*A AND my) AND d; ;

A<= 4*A;
end loop;
In a CSA array implementation of the above algorithm, a single set of encoding, mjts andd; controls
a CSA row operation, except for the first row of the array which needs two sets of encoding bits because
directly processes two partial products.

Finally, pipeline registers can be inserted in the multiplier data-path to improve the throughtput.

I1l. ARCHITECTURE AND LOGIC DESIGN OF THE PROPOSED MULTIPLIERS

The proposed architecture is based on sign seléor@r Booth encoding and a split CSA array. frdit
operands there arg2 partial products, i.en(2)(1/2) — 2 rows of full-adders in each of the two CSA arrays
(Fig. 2). A 4:2 compressor is used to merge the results of the split CSA array, with the view of allowing &
regular layout, though this work does not focus on layout design. Each row of full-adders is conventionall
numbered with the indegxof the Booth encoding bits controlling that row, thus starting ith4 for the

array on the left, ang= n/2 + 4 for the array on the right. Such row numbering convention simplify the
logic equations in the following.

A straightforward fixed-latency implementation of the scheme in Fig. 2 has the following delay components:
Delay = Dgooth-enct Dgooth-seit Dha + (/4 —2) Dsa + Da:2 + Depa,

where the delay contributions af®z..mh-ene Booth encoding logic producing the encoding pjtsn, s, d;
Dsooth-sel: l0gic that selects the operation of each CSA row according to the encodirigybit$ralf-adder

(CSA row); D, : full-adder (CSA row)Das» : 4:2 compressoDcpa : final CPA. The latter is intended as a

fixed-latency adder.



In order to enforce a variable (and shorter) latency in the CSA array operation, the proposed architectu
includes a set adkip signals. Referring to one of the two CSA arrays, ek signal indicates whether

all of the consecutive CSA rows numbeitedh+2, h+4, ... k have to perforrmo operation The skip

signals express the possibility of bypassing not only a single CSA row in case of no operation, but als
multiple consecutive CSA rows.

Fig. 3 illustrates the detail of the skip operation in the CSA rows. The Booth selector chooses among tt
possible operations to be performed, while skig,« signals force the data to bypass the CSA rows that
perform no effective operation (i.e. should add a zero). The bypass operation occurs in a single multiplex
delay even for multiple row bypass, thanks to the mulggig.x signals covering all the consecutive row
bypass combinations.

In [26], Kearney and Bergmann have shown that bypassing a CSA row in an array multiplier implies the
cost of forwarding to the final CPA an unresolved carry+sum bit pair for the least significant bit of the row,
instead of a single final-product bit. Iman-Booth-encodingrchitecture, this causes the final CPA size to

be 2 bits instead oh bits required by a conventional CSA array [26]. However, Boath-encoding
architecture ar2bit final CPA is anyway needed, to manage the extra carries produced by 2's complement
Booth subtractions [21], so that introducing variable-latency does not increase the size of the final CPA. Fic
3 details the mechanism used to exploit this property, which distinguishes the proposed architecture fro
previous “row-skipping” CSA arrays: a non-skipped row may forward the least significant carry caused by &
2's complement subtraction; a skipped row forwards the least significant carry coming from the precedin
row.

The logic design of thekip. signal generation is a peculiar aspect of the proposed architecture and deserve:
special attention. From Table 1, the expression of the sigkigls, h<k, is

sKiphk = (~Pn 0-mh) L(~pr+2 DHMheg) L. L~k CHMY).

where the symbol ~ indicates logic inversion.

For the operation to be efficient, it is necessary to generatskipg signals in parallel, rather than
iteratively (such askipk = skipvx1 O~px O~my). Moreover, to have the fastest generation of skig.

signals and to avoid increasing the fan-out of the Booth encoders, it is favorable to ols&ip.tistgnals
directly from the bits of the operafg] rather than from the Booth encoders ougpuandm,.. The logic
expression of a genergkip.k signal becomes (from Table 1):

skiphk =

(~bn+1 O-bn O-bneg + brea Ton Chig) O

(~br+s CHohso Tbnes + bris [onsz Donea) O



(~bre1 Ok OHbier + b T Thiy),

which, by De Morgan transformations, can be reduced to

~skip =

(~bn+1 Cbn + ~bpsq Doy + breg Cby + ~bp Db + by CHong + by Crong) +

(~ow+1 Do + ~er Mos + bes O+~ Doy, + Dier B + bk Do)

This NOR-0f-AND expression allows to produce 8iep.« bits concurrently with the Booth encoding bits

m, andpn. On the other hand, it obviously introduces redundant logic.

By some algebraic passages we can observe that the nungb@mosignals to detect all the combinations

of consecutive rows amongows isx(x+1)/2. For some CSA array sizes it could be impractical to generate
the complete set odkip« signals, because of the interconnection complexity (see Fig. 3). Im32 3
implementation, a full-bypass architecture would needk®é« signals and 8-input multiplexers on the final
CSA row. Such complexity is likely to be useless because the first CSA row consists of relatively fast half
adders, and because a full skip of both CSA arrays is reasonably very rare’ € %A%° probability,
assuming uniform operand distribution). One possibility is to partition a CSA array into blocks of limited size
that represent the maximum number of simultaneously bypassable CSA rows. In the prop82edit32
implementation, both 7-row arrays are divided into two blocks of 3 bypassable rows each, plus a nor
bypassable row of half-adders (first-row). Actually, this choice limits 8kigx signals the complexity of

each bypassable block; alternatively, three 2-row blocks would vanish most of the potential of multiple row
skipping, while a 4-row block followed by a 2-row block would result in a very unbalanced block
complexity.

For the final CPA adder, the proposed architecture employs a Carry Select (CS) scheme [5], whose d&
dependent completion time has been investigated and proven in previous works [15][29][30]. Specifically
the size of the CS groups in the final 64-bit CPA follows the scheme 8,8,8,8,8,6,6,5,4,3 bits, considering th



most significant digit on the left. With this sizing choice, after a delay equivalent to 7 full-adders the output
carries of the 3-, 4-, 5- and 6-bit groups are surely valid, while the 8-bit groapkave their output carry

valid (anticipated carry{15]). In that case, an early CPA completion occurs. In the worst case, an additional
delay of 5 multiplexers is needed to complete the carry selection chain. The CPA sizing choice aims &
having a similar latency variation (in nanoseconds) in the CPA and in the CSA array.

The resulting multiplier latency is a generic expression of the form

Delay = Dsooth-enct Dgooth-sei+ Dha + N(B)[(Dra + Dmuy) + DDmux+ Da:2 + Depa(A,B),

whereDnmuxis the delay of a multiplexeb, is the number of bypassable blocks of rows in a CSA aN@),

is the actual number of partial products added/subtracted by the two CSA arrays (actually the maximut
between the two). The notatioN$B), D.,4(A,B) indicate dependency on the operand values. In particular,
the formula assumes the overlapmkth. signal computation, i.skipiogic < Dgooth-enc + Dagooth-sel + Dha
whereDsipiogic IS the time to generate thkip. signals.

The functionality of the proposed architecture scheme has been validated through a bit level executak

algorithmic model [24].

IV. VLSI DESIGN OF SYNCHRONOUS VARIABLELATENCY IMPLEMENTATION

Fig. 4 shows the block diagram of the synchronous 32-bit implementation of the variable latency
architecture. Each of the two CSA arrays includes two 3-row bypassable block&ipkisignals operate

on each bypassable block.

The multiplier is pipelined by a register at the output of the split CSA array. Considering the worst case
delay, the approximate critical paths of the two stages are:

Delay_F{worst = Deooth-enc+ Dgooth-sei+ Dha + 6 Dta + 6 Dpux

Delay 2| worst= Dimux+ Da:o+ Depa = Dinux+ Dz + 7 Dra + 5 Diux ;

where the carry propagation and the sum generation in a full-adder are both indiéatddrasmplicity.

The multiplier can complete in either one or two clock cycles, depending on the actual operand values. T
complete the operation in one cycle, a multiplexer allows the partial results of the CSA array to override th:

pipeline register in case there is a chance to traverse the whole multiplier logic path in a single cycle.

To implement single-cycle/two-cycle completion prediction, we have to establish a set of conditions leading
to a total latency roughly equivalent to half the worst case total latency, and then size the VLSI cycle time t
fit such reduced latency. In the proposed implementation, the conditions for having the result ready after or
cycle are that each of the CSA arrays processes at most two partial praddéte second pipe stage is

not busy (processing a previous 2-cycle multiplicati@myd all of the 8-bit CS groups in the final CPA



anticipate their carries. When all those conditions are met, the actual critical atin sfages together is
nominallyDelay_singlecycle = Byoth-enct Dgooth-seit Dha + 2 (Dta + Dmuy) + 2 Dmux + Dimux D42+ 7 Dra +

Dmux The conditions are defined with the aim of a relatively easy logic detection of them; the VLSI
implementation of the multiplier must take care that the single-cycle-operation delay is roughly comparabls
with the worst case delays of the two single pipe staBelgy worst and Delay_2%wors). The VLSI cycle

time will be sizedaccordingly, as shown later.

Functionally, the signaddusydetects if the second pipe stage is busy, the signa¢ésolved-carrydetect if

the CPA cannot anticipate its internal carries, the sigralskip detect CSA rows that cannot be skipped,
and theonecyclesignals flags if the operation is completed in the current cycle. The “>2” blocks check if
there are more than two partial products processed in either CSA arrays, while the “>0" block (OR
operator) detects if there is at least one 8-bit CS groups in the final adder with unresolved carry.
Supposing the operands are presented at the multiplier inputsi‘ctbek falling edge, in case the result is
ready in one cycle the sigmaecycleis high at thé+1" clock falling edge; otherwise tlmmecyclesignal is

low, and the result is ready at the2" rising clock edge. It is important that tlmecyclesignal is
synchronous with the clock, i.e. it is stable within the current clock cycle, and is active only in case of early
completion of the multiplication.

Fig. 5 shows the full-custom VLSI design of the “skip logic” for a 3-row block. All the 3-row blocks in Fig.

4 and the corresponding “skip logic” are identical to this. Fig. 6 shows the VLSI design of the final logic
producing theonecyclesignal. Fig. 7 details the VLSI design of a carry select block in the carry-completion-
sensing CPA. All the logic in the multiplier is designed in dynamic “domino” CMOS style, with inverters
between cascaded logic blocks [50]. Transistor sizing is accomplished according to the “logical effort”
optimization methodology [42], though with simplifying assumptions concerning circuit branching. In
accordance with the logical effort method, the number of CMOS stages in the critical path of the mair
circuit blocks has been optimized. In particular, in the “skip logic” circuits (Fig. 5), there are 2 static
inverting buffers on each input bit (not shown), and the NOR-of-AND function is split into 2 domino stages.
In Fig. 5, the critical path is from th®...ky input bit to theskipus output signal. In Fig. 6, the critical inputs

of the logic circuit are thanresolvedbits, because they come from the carry select blocks in the final CPA
and therefore are later than the-skip signals, which directly come from the skip logic (Fig. 4). The critical
delay condition for the signahecycleoccurs when only 2o-skip are active (i.e. the CSA array processes

2 partial products), but there is somaresolvedactive. The resulting critical delay of the whole logic that

prOduceS the Slgnainecydels approxlmatel)Donecyde: DBooth_enc+ DBooth_se|+ Dha + 2 (Dfa + Dmu)) + 2



Dmux + Dmux ¥D4:2+ 7 Dsa+ Dyeteci WhereDgetectiS the dday of the drcuit in Fig. 6 from the unresolvegdbits

to the onecycleoutput sgnal.

The sgnals in the drcuits are pre-eargedhigh during the low clock-half-cycle, exceptfor the busysgnal

which is ready immediately after the falling edge of the clock becaus it is producedby the falling-edge-

triggered regter.

The following timing parameters, augmented by the register and prechargeverheal, define the cycle time
sugainable by the multiplier: the worst-cas Delay T |t ad Delay 29 horst, the dday in caseof single

cycle operation Delay_singlecycleand the prediction dday Donecycle

V. VLSI DESIGN OF ELF-TIMED VARIABLE-LATENCY IMPLEMENTATION

The scheme of the variable-latency asynchronous multiplier is based on the mcropipeline paradigm [41]. The
multiplier is desgned as atwo-stagemicropipédine interfaced vith the extemal environment through a par
of requetacknowledge 2-pase ggnals atthe input and another par at the output of the multiplier. The
scheme uses double edge triggered memory dements, redized acording to [51], which reducethe
micropipeline interconnedions and switching adivity.

Fig. 8 $iows the micropipdine implementation. The essatia feaure of the deggn is that the dday of each
of the two micropipeline stages is data dependent, thanks to the skipw signals in the CSA and the
completion-sensing CPA. To this end spea@lized drcuits ae respnsible for produdng the cmpletion
signals of the CSA arrays and of the CFA. For the CSA array, a dunmy logic pah controlled by the skip
signals reproducesthe dda-depandent logic levels of the two CSA arays. The signals Z1 and Z2 switch
nominally at the sane time asthe @rrespnding CSA aray output ae read,. This time depeds on the
adud daa vaues,through the skip signas. For the fina CPA, the cmpletion sgnal is generated by a
speclative completion technique[52], i.e. by sdeding one of two ddays for the mmpletion sgnal: a $orter
dday in caseno unresolvedsignal is adive, alonger déay in the opposite case. Duble edgetriggered
monostable elements provide the predarge ggnal for the dynamic logic gaesof the multiplier. In both pipe
stages a pgrammable dday eement is insated, to compensae for the pre-charge time and to adust
posshble deating fadorsin the wntrol sgnal dday, as éread/ shown in [14] and [10].

In the mcropipelined implementation, it is neither necessry to provide the logic to override the pipeline
regster, nor to checkif the seond gageis busy when the first stages resut is read/, becaus the regster
control sgnal is govemed by the dda-depedent hand-shaking of the two pipe $ages. Sothe dadic

behavior of the mcropipeline automaticaly implements the variable response time of the rrultiplier.



All the data-path components have the same circuit implementation as in the synchronous version, except 1
the double-edge-triggered pipeline register.

The average delays of the two variable-latency stages are nominally expressed by

Delay o=

Dgooth-enct Dgooth-seit Dha + apPPL(Dsa + Dmuy) +2 Dimux

Delay 29 avg=

D42t E{Dcpa} = Da2+ 7 Dsa + pNCPDmux+ (1 -pncp [ Dmux

whereappis the_average number of non-zeart@l products to be added/subtracted by the split CSA array
andpncpis the_probability that the final CPA needs garry gropagation, because all of the 8-bit CS groups
anticipate their output carry.

The timing parameters that define the performance of the micropipeline multiplier implementation are the
worst and best delay of the stages, and their average Delag f.., andDelay 2| .., to obtain the

multiplier throughput and latency.

VI. STATISTICAL INSTRUCTION LEVEL RELEVANCE OF VARIABLE LATENCY

The design of a variable latency unit should be supported by evidence that its average operation latency ir
real application is shorter than the worst-case latency. As Booth encoding affects the distribution of 0’s an
1's in the operands, we need a direct analysis of the bit-level behavior of the specific architecture executir
real operations. Here | present a study based on simulating a MIPS-like instruction set architecture, throu
an instrumented version of the Simplescalar tool set [8], considering two multiplication instructions: MULT
(32-bit integer multiply) and MULTU (unsigned 32-bit integer multiply). The MULTU instruction is less
significant as it occurs either rarely or never at all. Operand traces where extracted and used with a bit-le\
C-language model of the variable-latency architecture [24], obtaining the statistical parameters in Tables
and 3. Table 2 refers to a sequence of multiplications with theoretical standard distributions of the operand
More significantly, Table 3 refers to the execution of the SPEC95 benchmark suite with reference input file:
[23]. Tables 2 and 3 report the parametgs, pncpand the parametecyg, i.e. the probability of meeting

the conditions for single-cycle operation in the synchronous implementation.



Table 2

instruction -> MULT MULTU
parameter ->  app lcyc pngp app 1lgyc pncp
Uniformops 4.51 0.01 040 450 0.01 0.39

Gauss ops  2.90 0.02 0.03 299 0,01 0J03
Poisson ops  3.89 0.02 0.09 3.90 0.02 0j09

Table 3
instruction ->f MULT MULTU
parameter -> app lcyc pncp app lcyc pncp

applul 1.65 | 0.17 0.17] 1.81 0.05 0.06
compress 0.06 0.95 0.9% -- -- --
gcc| 1.48 0.45 0.79| -- -- --

go| 0.07 0.97 0.97| -- -- --
ijpeg| 3.79 | 0.00 0.00| -- -- --

li| 0.09 0.92 092 -- -- --
m88ksim 0.03 | 0.97 0.96 | 6.00/ 0.00] 0.00
mgrid| 1.11 | 0.00 0.00/ 1.86 0.23 0.3
swim| 0.32 0.88 0.88) 1.95 0.14 0.1
tomcatyy 0.20 0.80 0.80 -- -- --
turb3d| 1.20 | 0.00 0.00f 2.67 0.24
vortex| 1.55 | 0.30 0.30] 5.99 0.00 0.35
wave5 0.78 | 0.65 0.65 -- -- --
AVERAGE| 1.01 0.54 0.57| 0.38 0.11 0.2P
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VIl. PERFORMANCE RESULTS

Fig. 9 shows a sample of the HSpice level 49 simulation of the synchronous multiplier referring tqua 0.35
CMOS process, assuming typical operating conditions. The mask layout of the circuits has not been full
designed; however, long metal line parasitic capacitances were manually coded into Spice netlists, based
a hypothetical layout of the circuits. In all the circuits, no serious charge sharing problems occur, probabl
because the capacitance of the internal nodes that may cause charge redistribution effects are actually sn
compared to the load capacitance and the parasitic capacitance of the output nodes. In Fig. 9, from left
right, first a two-cycle multiplication case and then a single-cycle case are shown. Data values are sampl
by the registers on the falling edge of the clock. Register delay is overlapped with the subsequent prechar
phase of the dynamic combinational circuits.

Table 4 shows the delay characterization obtained for the relevant circuit modules of the multiplier; in the

asynchronous version, pre-charging starts after the precharge control signal has traversed a proper buf



tree in orderto drive al the dynamic circuits in the gpe $age in the s/nchronous verson, dock buffering
delay is overlapped with circuit operation, and pre-charging starts right at the falling edge of the clock
signal. For this reason, in the self-timed implementation the actual time taken by pre-charging is bnger.

Power disspation has not been thoroughly investigated; as inany parallel multiplier, the switching adivity is
strongly depedent on the sequece of input operands. A rough edimate basel on the transistor overhead
may lead to asswme lessthan 20% mwer dsspaion overhead with respectto a fixedlatency array

multiplier architedure.

A. Synchronous implementation

The cycle time limit for the synchronous inplementation results to be the completion prediction delay
Donecycle Of 1.84 ns. Consideling the the hold time for the pretarge #gnal, the expeded g/cle time
sugainable by the multiplier is nominally 2.25 ns (with agymmetric dock shapg. The aeaoverhead can be
estimated in terms of transistor count with resped to the implementation of the same synchronous nultiplier
arditedure with fixed latency: the total transistor count of the pioposedimplementation is 22609,and the
transistor count of dl the logic dedcaed to variable latency is 3329.The overheadis appoximately 17%.
The delay overhead due to the variable latency management is essentialy due to the multiplexers inserted in
the CSA arrays. Referring to Fig. 4, circuit smulation shows that the sum of the delays of the passtransistor
multiplexers causes a .82 ns overhead in the first (and dowed) pipdine stage. Thus a fixedlatency

implementation of the proposed architedure is expeded to sugain 1.75 ns o/cle time and 350 ns fixed

latency.

Table 4
synchronous Ins] self-timed s
DelayTvorst| 1.65 DelayTvorst| 1.65
Delay?worst| 1.23 Delay?worst| 1.20
pipe registe| 0.29 pipe registe| 0.32
precharge hold tira| 0.40 prechargalelay| 0.78
Dskiplogic 0.55 Dskiplogic 0.55
DBooth_enc 034 DBooth_enc 034
DBooth_seI 0.19 DBooth_seI 0.19
Dhain I CSA rav| 0.08| Dnain 1 CSA rav| 0.08
Delay singlecyd| 1.83 Delay e | 0.76
Donecyce] 1.84 Delay? b | 0.81
Dt in CSA rav| 0.11
Dmx in CPA| 0.08




Table 5 — (n.a. = not applicable; N.A. = not available)

M-CORE| M-CORE | this work | this work
type} SA| PPG PIIj NEQ (best lat.)| (worst lat.)| (best lat.) | (worst lat.)
variable-latency statisti¢s
(SPEC95 multiplicationg) n.a. nja. n.a. mn.a. N.A. N.A. 54% 46%
latency [cycles 2 3 1 L 2 18 1 2
latency [ns] 9.60 6.44 6.7 2.13 60.00 540.00 2.25 1.50
throughput [ns] 4.8D0 2.14 1.67 2.J3 60,00 54(.00 2.25 .25
feature sizeym] | 0.35] 0.24 0.18 0.2b 0.36 0.35

Table 6 — (source for performance of compared designs: [27])

type BFB SK KB this work
word size [bits] 16x16| 16x16| 16x16 32x32
latency [ns] 25.00 64.00 15.00 3.48
throughput [ns] 5.51 6.40 10.80 1.[r6
supply voltage [V] 500 5.00 5.00 3.80
feature size|jm] 1.20 1.0¢ 0.60 0.3b

Fig. 10 shows a comparison with existing state-of-the-art synchronous 32-bit multipliers. The labels
“M-CORE”, “PllI", “SA” and “PPC” refer to 33MHz M:CORE MMC2001 (incorporating a variable latency
multiplier), 600MHz Pentiumlll, 206MHz StrongARM 1110 and 466 MHz PowerPC 750, respectively. The
label “NEC” refers to NEC'’s ultra-fast 2.7 ns multiplier architecture reported in [21], here estimated for 32-
bit design instead of 54-bit. The original delay contribution reported in [21] are 0.53 ns Booth
encoders/selectors, 0.95 ns 4:2 compressor tree, and 1.22 ns 108-bit CarryLookahead CPA. Scaling 1
compressor tree and the final CPA for 32-bit multiplier operands leads to an estimated 2.33 ns total latent
and 2.73 ns cycle time including pre-charge time.

Considering the 54% statistical probability of single-cycle operations in SPEC95 execution (Table 3), the
average expected latency of the proposed multiplier remains slightly longer than NEC’s design, due to mot
advanced circuit optimization and technology. As a whole, the expected-performance figures of the

synchronous variable-latency design are surely remarkable.

B. Self-timed implementation
From Table 4, the worst and best case latencies of the self-timed implementation result to be 4.41 ns a
3.13 ns, respectively, while the average delays of the two micropipeline stages referring to SPEC9

execution are



Delay_1st}yg=0.76ns + 101(Dsa + D) = 0.94ns

Delay 29 avg= 0.76ns + Q57 Dyux+ 0.43 [5 Dinyx= 0.981s.

The resiting appoximate averagelatency of the whole micropipdineis 78 + Q94 + Q78 + Q98 = 348
ns and the averagethroughput is dctated by the déay of the seond dage, 098 + Q78 = 176 ns. The
arditedure is organizedto overap the pre-targe phaseof the seond stage with the propagdion dday
through the micropipdine regster.

The variable-latency complexity overhead in the self-timed implementation is smilar to the synchronous
case, ashe essatia logic blocks ae the same.

Fig. 11 shows acompatison with published agnchronous multipliers peformance. The cmmpared degns
are al 16-bit multipliers. The labels “BFB” and “SK” respedively refer to the fixed-latency self-timed
designs reported in [7] and [38], while the label “KB” refers to the variable-latency design reported in [26].

Tednology paranetersfor dl the deggns are reprted.

VIIl. CONCLUSIONS

The proposed architedure and VLSI desgn demonstrates that a varable latency multiplier, in ether
synchronous or ag/nchronous implementations, can overcome the peformance offered by fastfixedlatency
multipliers.

The presated degyn addresghe useof edgetriggered regters,to reducethe mmplexity of the regster-
overriding logic design in the synchronous inmplementation and of the interconnedion routing in the seif-
timed implementation. Investigation of the performance inpad of using latches may be an area of further
work. Similarly, further work may address the performance trade-offs of the number of pipe stages in the
self-timed micropipelined implementation.
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Fig. 1 — Baic sheme of array
multiplier. ha= Half Adders, fa=Full

Adders.
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Fig. 2 —Architedure stieme of split-array multiplier with Booth encoding. Bsel = Booth seledor,
HA= Half Adders, FA=Full Adders.
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bottom is detailed in Fig. 5 at transistor level.
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