
High-Speed QDI Asynchronous Pipelines

Recep O. Ozdag
EE Dept. – Systems Division, USC

Los Angeles, CA 90089
ozdag@usc.edu

Peter A. Beerel

EE Dept. – Systems Division, USC
Los Angeles, CA 90089

pabeerel@usc.edu

Abstract

This paper introduces two new high-speed quasi delay
insensitive (QDI) asynchronous pipeline templates. These
new high throughput templates support complex non-linear
pipeline structures and are well suited for fine-grain
pipelining. Timing analysis and HSPICE simulations show
that these templates are 20% and 40% faster than known
QDI counterparts.

1. Introduction

Asynchronous design is increasingly becoming an
attractive alternative to synchronous design because of its
potential for high-speed, low-power, reduced
electromagnetic interference, and faster time to market [1],
[2], [3]. To support these design efforts, numerous design
styles and supporting CAD tools have been developed. For
low-speed low-power applications, Phillips Research has
developed a comprehensive CAD-supported design flow
based on a high-level language called Tangram [4].
University of Manchester has developed a similar system
based on Balsa [5] to support low-power medium-speed
applications including embedded microprocessors. For
high-speed applications, numerous fine-grain pipelining
techniques have been developed [6], [7], [8], [9], [10], [11],
[12]. Most of these pipeline strategies, however, achieve
high-performance at the cost of introducing numerous types
of timing assumptions, ranging from ultra-aggressive to
easily-satisfiable, that complicate the design process. In
particular, these timing assumptions must be accounted for
during floorplanning, placement, transistor sizing and
verified pre- and post-layout. In fact, the more aggressive
timing assumptions are expected to become increasingly
difficult to satisfy in ultra-deep-submicron design because
of increased variance in nominal delays.

The design methodology proposed by Caltech is
perhaps the most robust using delay-insensitive
communication between quasi delay insensitive (QDI)
pipeline templates [11] [14]. Although focused on ease of
design using quasi delay insensitive templates, this

methodology achieves reasonable performance through
fine-grain pipelining and parallelism [13].

This paper proposes two new templates that provide
significant performance improvements over those proposed
by Caltech without sacrificing quasi delay insensitivity. The
key idea is to reduce the complexity of internal circuitry by
intelligently reducing concurrency and using an additional
wire for communication between pipeline stages. We
propose two templates: one that is a half-buffer which
requires two pipeline stages to hold one data token and one
full-buffer template that can itself hold one data token.

The remainder of this paper is organized as follows.
Section 2 gives background on asynchronous pipelines,
reviews several existing QDI pipeline templates, and
discusses several issues associated with non-linear pipelines.
Sections 3 and 4 present the new templates in detail,
including the protocol, implementation, and timing analysis.
Finally, experimental results, comparisons, and conclusions
are given in Sections 5 and 6.

2. Background

This section first gives background on commonly used
asynchronous data representation schemes. Then, it reviews
three asynchronous pipelining styles: Caltech’s Weak-
Conditioned Half Buffer (WCHB), Precharged Half Buffer
(PCHB), and Precharged Full Buffer (PCFB) templates [11].
Lastly, issues with non-linear pipelines and the role of input
completion sensing are reviewed.

2.1 Data Representation Schemes

An asynchronous communication channel is a bundle
of wires and a protocol to communicate data between a
sender and a receiver. The encoding scheme in which one
wire per bit is used to transmit the data and an associated
request line is sent to identify when data is valid is called
single-rail encoding and is shown in Figure 1. The
associated channel is called a bundled-data channel.
Alternatively, if the data is sent using two wires for each bit

Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC�02)
1522-8681/02 $17.00 © 2002 IEEE

of information, the encoding is called a dual-rail channel.
Extensions to 1-of-N encoding also exist.

Both single-rail and dual-rail encoding schemes are
commonly used, and there are tradeoffs between each.
Dual-rail and 1-of-N encodings allow for data validity to be
indicated by the data itself and are often used in QDI
designs. Single-rail, in contrast, requires the associated
request line, driven by a matched delay line, to always be
longer than the computation. This latter approach requires
careful timing analysis but allows the reuse of synchronous
single-rail logic.

Figure 1. Pipeline Channels

2.2 WCHB

Figure 2 shows a WCHB template for a linear pipeline
with a left (L) and right (R) channel and an optimized
WCHB dual-rail buffer. L0 and L1, R0 and R1 identify the
false and true dual rail inputs and outputs, respectively.
Lack and Rack are active-low acknowledgment signals.
Note that we do not show staticizers that are required to
hold state at the output of all C-elements.

The operation of the buffer is as follows. After the
buffer has been reset, all data lines are low and
acknowledgment lines, Lack and Rack, are high. When data
arrives by one of the input rails going high, the
corresponding C-element output will go low, lowering the
left-side acknowledgment Lack. After the data is propagated
to the outputs through one of the inverters, the right
environment will assert Rack low, acknowledging that the
data has been received. Once the input data resets, the
template raises Lack and resets the output.

Since the L and R channels cannot simultaneously hold
two distinct data tokens, this circuit is said to be a half
buffer or has slack ½ [11]. This WCHB buffer has a cycle
time of 10 transitions, which is significantly faster than
buffers based on other QDI pipeline templates.

Another feature of the WCHB template is that the
validity and neutrality of the output data R implies the
validity and neutrality of the corresponding input data L.
This is called weak-conditioned logic [15] and is the same
logic used in fine-grain pipelines proposed by Theseus logic
[16]. We will discuss its advantages and disadvantages after
we discuss non-linear pipeline templates.

Figure 2. WCHB

2.3 PCHB and PCFB

Figure 3(a) shows the template for a pre-charged half-
buffer (PCHB). Unlike the WCHB, the test for validity and
neutrality is checked using an input completion detector.
The input completion detector is denoted as LCD and the
output completion detector as RCD.

The function block need not be weak-conditioned logic
and thus can evaluate before all the inputs have arrived (if
the logic allows). However, the template only generates an
acknowledgment signal Lack after all the inputs have
arrived and the output has evaluated. In particular, the LCD
and the RCD are combined using a C-element to generate
the acknowledgment signal.

A few minor aspects of this template should also be
pointed out. First, because the C-element is inverting the
acknowledgment signal is an active-low signal. Second, the
Lack signal is often buffered using two inverters before
being sent out. Another two inverters are also often added
to buffer the internal signal en that controls the function
block. For simplicity, these buffering inverters will not be
shown in the figures in this paper.

The protocol for a PCHB pipeline stage is captured by
the STG [17] for a three-stage pipeline illustrated in Figure
4(a). From the STG, it is possible to derive the pipeline’s
analytical cycle time:

TPCHB =3. tEval + 2. tCD + 2. tc+ tprech
Due to the extra buffering and bubble shuffling, the cycle
time generally amounts to 14 gate delays or transitions.

The PCFB template and its STG are shown in Figure
3(b) and Figure 4(b). The PCFB is more concurrent than
the PCHB because its L and R handshakes reset in parallel
at the cost of requiring an additional state variable. The
PCFB analytical cycle time is:

 TPCFB =2. tEval + 2. tCD + 2. tc+ tprech

which generally amounts to 12 transitions. Here tCD takes
two transitions, one of the C-elements takes one transition,
and the other takes two transitions.

2.4 Non-Linear Pipeline Structures

Recently many new asynchronous pipelines have been
introduced. However most of them have been targeted for
linear pipeline applications such as FIFOs. Real designs,
however, require more complicated non-linear pipeline
structures. In particular, linear pipeline stages have only a

Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC�02)
1522-8681/02 $17.00 © 2002 IEEE

single input and a single output channel, where as non-
linear pipelines stages can have multiple input and output
channels. The QDI templates are easily extended to non-
linear pipelines and now we review the underlying issues.

To introduce these issues we focus on forks and joins.
A join is a pipeline stage with multiple input channels
whose data is merged into a single output channel. A fork is
a pipeline stage with one input channel and multiple output
channels. Complex forks and joins can involve
conditionally reading from or writing to channels based on
the value of a control channel that is unconditionally read,
as in a merge or split channel. Abstract illustrations of these
channels are shown in Figure 5.

Since a fork has multiple output channels, it must
receive an acknowledgment signal from all of them before
it precharges. A join, on the other hand, receives inputs
from multiple channels and must broadcast its
acknowledgment signal to all its input stages.

A join acts as a synchronization point for data tokens.
The acknowledgment from the join should only be
generated when all the input data has arrived. Otherwise a
stage feeding a join, referred to as A, that is particularly
slow in generating its data token may receive an
acknowledgment signal when it should not, violating the 4-
phase protocol. If the acknowledgment signal is deasserted
before the slow stage A generates its token, the token is not
consumed by the join, as it should be. In fact, this token
may cause the join to generate an extra token at its output,
thereby corrupting the intended synchronization.

A conditional split is a combined fork and join where a
control channel is used to determine which output is

Figure 3. a) PCHB and b) PCFB templates

Figure 4. a) PCHB and b) PCFB STG

generated. The control may indicate to send the input data
to any of the output channels, any combination of the output
channels, or none of them. The third option is also known
as a skip.

A conditional join is a join where the control signal,
select, comes from another pipeline stage. The select signal
controls which incoming channel should be read.

Figure 5. Non-linear pipelines.

2.5 Why Input Completion Sensing?

As mentioned above, validity should be checked on all
input channels before the acknowledgment signal is
asserted to prevent the incorrect insertion of a token caused
by a slow/late input channel. Neutrality should be checked
to guarantee that the previous stages have been precharged,
so that the acknowledgment signal is not deasserted too
early, thereby violating the four-phase protocol on any stage
slow to precharge.

The templates presented in this section check validity
and neutrality in different ways. Because the function block
in WCHB template is weak-conditioned, the output
completion detector implicitly checks validity and neutrality
of the input data token. In the WCHB buffer the weak
conditioned function block is a simple C-element. However,
for more complex non-linear pipelines, weak-conditioned
function blocks unfortunately require complex NMOS and
PMOS networks. This results in slower forward latency and
bigger transistor sizes. As an example, a weak-conditioned
dual-rail OR is shown in Figure 6.

Figure 6. An OR gate implementation using weak

conditioned logic

Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC�02)
1522-8681/02 $17.00 © 2002 IEEE

In contrast, the PCHB and PCFB check the validity and
neutrality of the input data explicitly with a distinct input
completion detector. This enables the function block to use
smaller and faster pre-charge logic function blocks. The
cost of this alternative is that it requires more transistors
and has more transitions per cycle.

3. New QDI Templates

One optimization that can be applied to the PCHB and
PCFB templates is to merge the LCD of one stage with the
RCD of the other by adding an additional request line to the
channel. This is shown in Figure 7 for a PCHB template.

Figure 7. Optimized PCHB for a 1-of-N+1 channel

The request line indicates the assertion/deassertion of

the input data, as in the bundled-data channel. However in
contrast to a bundled-data channel, the data is sent using 1-
of-N encoding, yielding what we call a 1-of-N+1 channel.
The request line, at least from the channel point of view,
may appear redundant. However, the request line enables
the removal of the input completion detector thereby saving
area and reducing capacitance on the data lines. Moreover,
the request line does not significantly impact performance,
the template is still QDI, and the communication between
stages remains delay-insensitive.

In this section we propose two new 1-of-N+1 QDI
templates that intelligently reduce concurrency to reduce
the stack size of the function blocks and thereby improve
performance.

3.1 RSPCHB

We propose a new pipeline template that eliminates the
need of the internal en signal of the PCHB template,
thereby reducing the transistor stack sizes in the function
block. We refer to this new QDI pipeline template,
illustrated in Figure 8(a), as a Reduced Stack Precharged
Half Buffer (RSPCHB). A specific form of this template for
dual-rail data is shown in Figure 8(b). Notice that we
optimized the RCD block by tapping its inputs before the
output inverter and using a NAND gate instead of an OR
gate.

The RSPCHB facilitates the removal of the internal
enable signal by reducing concurrency that effectively does
not improve performance. More specifically, in the PCHB

template the output of the LCD and RCD are combined
using a C-element to generate the acknowledgment signal
Lack. This supports the integration of the handshaking
protocol with the validity and neutrality of both input and
output data, which removes the need for the function block
to be weak-conditioned, but also requires the use of the en
signal. It is this replacement however that introduces more
concurrency than is necessary.

In particular, in the case of a join, the non-weak-
conditioned function block may generate an output as soon
as one of the input channels provides data. In response, the
RCD of the join will assert its output. Meanwhile, any
subsequent stage can receive this data, evaluate, assert both
its LCD and RCD outputs, and assert its acknowledgment
signal. Although the join can receive this acknowledgment,
it will not precharge until after en is asserted. The en signal
delays the precharge of the circuit until after the
acknowledgement to the input stages has been asserted.
This delay is critical to prevent the precharge from
triggering the RCD to deassert which would prevent the C-
element from ever generating the acknowledgment.

If only the generation of the acknowledgment signal
from any stage subsequent to the join was delayed until all
input data to the join has arrived and been acknowledged,
then the en signal could be safely removed. In fact, such a
delay of the acknowledgement would not generally impact
performance because the join is the performance bottleneck
for the subsequent stages. Therefore, this added
concurrency is essentially unnecessary.

The unique feature of the RSPCHB is that it derives the
request line from the output of the C-element instead of the
RCD. (In particular, since the output of the C-element is
active low and the request line is active high, the output of
the C-element is sent through an inverter before driving
Rreq.) The impact of this change is that the
assertion/deassertion of Rreq is delayed until after all Lreq’s
are asserted/deasserted. As a consequence, the
acknowledgment from a subsequent stage of the join may
be delayed until well after its data inputs and outputs are
valid. More specifically, the stage will delay the assertion of
its acknowledgment signal until all Lreq’s are asserted
which can occur arbitrarily later than the associated data
lines becoming valid. This extra delay, however, has no
impact on steady-state system performance because the join
stage is the bottleneck, waiting for all its inputs to arrive
before generating its acknowledgement. In fact, this change
yields a template with no less concurrency than WCHB.

The advantage of this generation of the request line is
that the function block does not need to be guarded by the
enable signal. In particular, it is now sufficient to guard the
function block solely by the Pc signal because the Pc signal
now properly identifies when inputs and outputs are valid.
Namely, the function block is allowed to evaluate when Pc
is deasserted which occurs only after all inputs and outputs
data lines are reset. Similarly, it is allowed to precharge

Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC�02)
1522-8681/02 $17.00 © 2002 IEEE

when Pc is asserted which occurs only after all input and
output data lines are valid.

The RSPCHB, depicted in Figure 8a and 8b is still
QDI, however, the communications along the input
channels become QDI instead of delay-insensitive. In
particular, the relative timing assumption that must be
satisfied is that the data should reset before Rack is de-
asserted. This timing assumption is necessary to prevent re-
evaluation of the block with old data. If we assert that the
fork between the function block, the RCD, and the next
stage is isochronic [18], this assumption is satisfied. In
particular, the data line at the receiver side is then
guaranteed to reset before the request line Rreq resets
because only after the data lines reset can the RCD trigger
the C-element, subsequently triggering Rreq. The analytical
expression for the timing margin associated with this
isochronic fork assumption can be derived from the abstract
STG of the RSPCHB shown in Figure 9. In particular, the
delay difference between the resetting of the data and the
associated request line should be less than:

TMargin =2. tInv + 1. tCD + 3. tc
This margin is between 6 and 8 gate delays depending on
buffering and is easily satisfied with modern routers.

As an alternative, the completion sensing circuitry can
also be tapped before the output inverters, as shown in
Figure 8c, reducing the output capacitance and enabling the
use of a NAND gate rather than a NOR gate for completion
sensing. Interestingly, this optimization preserves QDI
properties when applied to the original PCHB template. In
our design, however, because of the 1-of-N+1 channel, this
optimization breaks QDI. In particular, the design will fail
if the output buffers are tremendously slow in comparison
with the associated request line. The same relative timing
constraint that Rack is de-asserted after the dta is reset still
guarantee correct operation. The associated timing margin,
however, is slightly reduced.

The analytical cycle time of the RSPCHB can be
derived from the STG shown in Figure 9 as:

TRSPCHB = Max(3. tEval + 2. tCD + 2. tc+ tprech ,
 tEval + 2. tCD + 4. tc+ tprech)
With bubble shuffling, RSPCHB and PCHB have equal

numbers of transitions per cycle. The advantage of
RSPCHB is that the lack of an LCD and reduced stack size
of the function block, which reduces capacitive load, and
yields significantly faster overall performance. The cost of
this increase in performance is that it requires one extra
communicating wire between stages.

Figure 8. a) Abstract and b) detailed QDI RSPCHB

pipeline template. c) Non-QDI optimized alternative.

Figure 9. The STG of the RSPCHB

 Note that there is a striking similarity between the
control of our base RSPCHB and the basic micropipeline
structure proposed by Sutherland [19]. Both pipelines use a
C-element and a single inverter as the control. However,
our proposed template uses 1-of-N signalling and output
completion sensing instead of matched delay lines to
generate the done signal. In addition, our templates use a
four-phase handshaking protocol instead of a two-phase
protocol.

A fork can be implemented easily by either using a C-
element to combine the acknowledgment signals from the
forking stages or by combining them by increasing the stack
size of the function block. Similarly a join can be
implemented, by combing the request lines in the C-element
and forking back the acknowledgment signal.

Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC�02)
1522-8681/02 $17.00 © 2002 IEEE

Figure 10. Conditional a) join and b) split using

RSPCHB

Consider the slightly more complicated template for a
conditional join in which a control channel S is used to
select which input channel to read and write the read data
token to the single output channel illustrated in Figure 10(a).
Note that unlike micropipeline-based architectures, the
control and data channels are indistinguishable in nature.
(Section 3.3 describes how an FSM may generate such
control channels.) The template has one C-element per
input channel, each responsible for generating the

associated acknowledgement signal. Each C-element is
triggered by not only the RCD output, but also the
corresponding control channel bit. The collection of C-
elements are combined using a NOR gate to generate the
Lracks because the C-elements are mutually exclusive. This
template can be easily extended to handle more complex
conditionals in which multiple inputs can be read for some
values of the control.

The template for the conditional fork is shown in
Figure 10(b). Here, the functional block, the RCD and the
C-element are repeated for each output channel. The select
data lines ensure only one function block evaluates. All C-
elements are combined using an AND gate to generate the
acknowledgement for the select channel. (This is because
both the C-element outputs and the acknowledgement signal
are active low.) This template can easily be extended to
handle the generation of multiple outputs in response to
some values of the control.

A common example of a conditional fork is a skip in
which depending on the control value the input is consumed
but no output is generated. The implementation has a skip
output acting as an internal N+1 output rail that is not
externally routed and is triggered upon the skip control
value.

Figure 11 shows a one-bit memory implemented using
a RSPCHB template. A and C represent the input and
output channels. B is the internal storage. S is an input
control channel that selects the write or read operation.
When S0 is high, the memory stores the value at the input
channel A to the internal storage B. When S1 is high, on the
other hand, the memory is read, that is, the stored memory
value is written to the output channel C. For a write, both
input data and control channels are acknowledged, while
for a read, only the control channel is acknowledged.

The write and read operations are as follows. After
reset, the memory, stored in the dual-rail Memory Unit, MU
(similar to [11]) is initialized to some value and one of the
rails of the internal signal B is high. When an input A is
applied and S0 is high, if a value opposite to the value
already stored in the memory is written, then first both rails
of B are lowered and then one of them is asserted high,
thereby storing the data. On the other hand if the value to be
written is the same value already stored in the memory then
the there is no transition and value remains the same. The
Memory Completion Detector, MCD, detects that the value
in the memory is updated, and asserts its output. The
output of the MCD as well as the request lines from the data
and control channel drive a C-element, which generates the
acknowledgment signal LackA. When S1 is high, on the
other hand, the internal data stored in B is sent to the output
channel C. When an acknowledgment is received from the
output channel C, the outputs are reset but the data stored
remains unchanged. The control channel S is acknowledged
for both write and read operations using an AND gate
driven by the two C-element outputs.

Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC�02)
1522-8681/02 $17.00 © 2002 IEEE

Notice that the memory is actually implemented by
merging two RSPCHB units. The first one is used to store
data (write), and the second one to send it to the outputs
(read). The first unit has an MCD that detects the
completion of the write operation and resets when all inputs
are lowered.

The MCD can be simplified by replacing the PMOS
transistors driven by A0 and A1 with a PMOS transistor
driven by LackA. However this requires that the delay
difference between the data lines of channel A and its
associated request line is not long enough to cause short
circuit current. This restriction can be removed by also
controlling the NMOS stack by also adding one more
NMOS transistor driven by the LackA signal. The overall
benefit however is not clear.

Figure 11. A RSPCHB 1-bit memory

3.2 RSPCFB

Our second new 1-of-N+1 QDI pipeline template is a
full buffer constructed by merging our RSPCHB with a
modified WCHB. An abstract illustration of this reduced
stack pre-charged full buffer (RSPCFB) is shown in Figure
12(a) and a more detailed implementation for dual-rail data
is shown in Figure 12(b).

The RSPCFB has two new features. First, the inverters
from both of the half buffers have been removed to keep the
forward latency of the new template at two gate delays. We
assert that the inverters between the two half buffers can
safely be removed because the RSPCHB has little gate load
and wire load can be minimized by placing/routing this
template as a single unit. The output inverters are only
necessary if this unit is driving a significant load and can be
added as necessary. (However a staticizer, not shown, is still
necessary.) Second, the WCHB has to be modified to accept
an input request signal and generate an output request
signal. This input request signal drives a C-element whose
other input is the RCD output. This C-element then triggers
the internal acknowledgement to the RSPCHB part instead
of the RCD alone. In addition, the output request signal is
implemented by simply tapping of a signal from the RCD
output. One other difference is that the request signal is now

active low because the inverters have changed locations
(i.e., bubble shuffling [18]).

The circuit operates as follows. The RCD of the
RSPCFB part detects the evaluation of the function block
and asserts its output. The output of the RCD drives the C-
element, which generates the acknowledgment signal Lack
to the previous stage after all the request lines associated
with the data also arrive. If the next stage is ready to accept
new data, the acknowledgment signal Rack should already
be deasserted, allowing the C-elements in the forward path
to pass the data to the next stage. Subsequently, the
WCHB’s RCD will assert its output asserting the request
signal to the next stage. The output of the RCD also drives
the C-element Cb, which asserts the internal
acknowledgement back to the RSPCFB part, allowing the
function block to precharge. When the acknowledgment
signal Rack is deasserted, the C-element in the forward path
will deassert its outputs. This will trigger the WCHB’s RCD
to deassert Rreq, the C-element Cb to deassert the internal
acknowledgement back to the RSPCHB, and thereby enable
the function block to re-evaluate.

Figure 12. a) Abstract and b) detailed RSPCFB

Notice that the Rreq of the RSPCFB is taken from the

output of the RCD instead of the C-element, unlike the
RSPCHB. This is because the WCHB part has weak-
conditioned logic, which will not reset until all inputs,
including inputs from the RSPCHB part, have reset. This
implicitly avoids the problem of preventing the assertion of
the acknowledgement back to the RSPCHB part that
delaying Rreq solved. The advantage of this is that the Rreq
can be generated earlier. The disadvantage is that this
reduces are timing margin on input channels to joins to 5 to
7 gate delays, depending on buffering.

The RSPCFB has 10 transitions per cycle, less than
Caltech’s PCFB, which has 12 transitions. The analytical
cycle time, using the STG in Figure 13, can be expressed
as:

TRSPCFB = Max(3. tEval + 2. tCD + 2. tc+ tprech ,
 2. tEval + tCD + 3. tc+ tNAND)

The RSPCFB can be extended to handle non-linear
pipeline structures in the same way as the RSPCHB without
any additional timing assumptions.

Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC�02)
1522-8681/02 $17.00 © 2002 IEEE

Figure 13. The STG of the RSPCFB

3.3 FSM Design

One of the most important aspects of a complete
system design is the implementation of the controller. An
FSM is actually a state holding circuit, which only changes
its state when the expected inputs for that state are available.
One way to build an asynchronous FSM is to feed the
outputs of the pipeline stage back to its inputs using buffers
to hold the data (also proposed in [11]). This technique is
similar to the synchronous case. In addition it requires no
new circuits and can be easily applied to template-based
design. Figure 14 shows an abstract FSM.

Figure 14. An abstract asynchronous FSM

Each channel either is an input, an output, or holds
state. The next and current state channels can be
implemented with either 1-of-N+1 channels, ideally suitable
for one-hot state encoding of the FSM. The next state and
the output logic blocks are complex QDI pipeline stages,
which can have multiple function blocks inside. These
multi-input multi-output conditional blocks are
implemented the same way as the conditional read and

write blocks shown previously.
The simplicity of this method for designing FSMs

allows all known synchronous design techniques for
generating Boolean next state and output expressions
directly to be applied. Also the next state logic can be
implemented as several stages of pipelined logic, reducing
the number of necessary feedback buffers. Aside from using
feedback buffers, which for a high number of states can
yield a large circuit there are also other ways to design
circuits that hold state.

4. Simulation Results

Both formal verification and HSPICE simulations were
performed to check the correctness of functionality and to
measure performance of all the proposed linear and non-
linear pipelines.

We used the relative-timing verification tool RTCG
[20] to verify the QDI property and the proposed relative-
timing constraints of both RSPCHB and RSPCFB base
templates. A structural blif circuit was generated for each
template along with a signal transition graph (STG)
description of the environments. For the optimized
RSPCHB template, the tool automatically generated
relative timing constraints that were sufficient to guarantee
correctness, but more complex than the relative-timing
constraint that we manually derived. Using the tool
interactively, however, we also were able to verify the
correctness of our manually-derived relative timing
constraints.

HSPICE simulations were performed using a 0.25
TSMC process with a 2.5V power supply at 25

o
C. The

purpose of these simulations was to confirm the results
obtained by the Verilog simulations, and to compare the
throughputs of the proposed pipelines with the bubble-
shuffled PCHB and PCFB pipelines presented in the
background section. Since the goal was comparison, no
attempt was made to fine-tune the transistor sizing to
achieve optimum performance. In particular, all transistors
were sized in order to roughly achieve a gate delay equal to
a small inverter (WNMOS=0.8um, WPMOS=2um, and
L=0.24um) driving a same-sized inverter. For the purposes
of this comparison, wire delay also has been ignored.

For the half buffers, the PCHB and the RSPCHB, a
linear dual-rail pipeline of buffers with 60 stages has been
constructed to achieve a static slack of 30, which means that
it can hold 30 distinct data tokens. For the full buffers, the
PCFB and the RSPCFB, 30 stages have been used to
achieve the same static slack. All pipelines can hold 30
distinct tokens. Figure 15(a) shows throughput versus
tokens triangles for the half buffers and Figure 15(b) shows
them for the full buffers. The triangles for the PCHB and
PCFB are indicated with the dotted lines. Approximately 15
distinct points have been obtained per pipeline for the
triangle graphs using HSPICE simulation. One key result

Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC�02)
1522-8681/02 $17.00 © 2002 IEEE

obtained from this simulation is the dynamic slack of each
pipeline, which is the number of tokens required to achieve
maximum throughput [10], [11].

The PCHB achieves a maximum throughput of
772MHz with a dynamic slack of 7.3. The RSPCHB is
faster with a maximum throughput of 920MHz and a
dynamic slack of 8.25. The throughput improvement is
approximately 20%. For the full buffers, the PCFB
achieves a maximum throughput of 707MHz and a dynamic
slack of 3.7. The RSPCHB is faster with a maximum
throughput of 1000MHz and a dynamic slack of 5.9. The
speed improvement is approximately 40%, however due to
the C-elements in the forward path of the RSPCFB, the
forward latency is about 15% slower. In both the half and
full buffer, we achieved higher dynamic slack. This means
that our templates support more system-level concurrency
and higher stage utilization.

Notice that although the PCFB has 12 and the PCHB
has 14 transitions per cycle, the PCFB was slower. This is
partially due to the heavier load on the internal wiring in the
PCFB compared to the PCHB. Clearly, careful transistor
sizing and buffering can improve the performance of all
pipeline templates, however, we expect the relative
performances to remain approximately the same.

Figure 15. Throughput versus tokens for a) the PCHB

and RSPCHB and b) the PCFB and RSPCFB linear
pipelines

5. Conclusions

This paper has introduced new high-speed QDI
asynchronous pipeline templates for non-linear dynamic
pipelines, including forks, joins, and more complex
configurations in which channels are conditionally read
and/or written. Timing analysis and HSPICE simulation
results demonstrate that our new RSPCHB achieves ~20%
throughput over its PCHB counterpart and our new
RSPCFB achieves ~40% throughput improvement over the
PCFB counterpart.

6. Acknowledgements

This research has been partially supported by NSF
Grant CCR-0086036 and gifts from both TRW and Fulcrum
Microsystems. We would also like to thank Andrew M.
Lines for clarifying several points in regards to his thesis
and Jim Garside for shepherding this paper through the
revision process.

References
[1] K.S. Stevens, S. Rotem, R. Ginosar, P.A. Beerel, C.J. Myers,

K.Y. Yun, R. Kol, C. Dike, M. Roncken, “An asynchronous
instruction length decoder,” in IEEE JSSC, Volume: 36
Issue: 2, pp. 217–228, Feb. 2001.

[2] W.S. Coates, J.K. Lexau, I.W. Jones, S.M. Fairbanks, and
I.E. Sutherland. “FLEETzero: an asynchronous switching
experiment,” in Proc. of ASYNC, pp. 173–182, March, 2001.

[3] J.V. Woods, P. Day, S.B. Furber, J.D Garside, N.C. Paver, S.
Temple, “AMULET1: an asynchronous ARM
microprocessor”, IEEE Transactions on Computers,
Volume: 46 Issue: 4, pp. 385 – 398, April 1997.

[4] J. Kessels, A. Peeters “The Tangram framework:
asynchronous circuits for low power ”, Proceedings of the
ASP-DAC 2001, pp. 255 –260, 2001.

[5] A. Bardsley, D. A. Edwards, “The Balsa Asynchronous
Circuit Synthesis System”, Forum on Design Languages,
Sept. 2000.

[6] I. E. Sutherland, and S. Fairbanks. “GasP: a minimal FIFO
control,” in Proc. of ASYNC, 2001, pp. 46–53, March 2001.

[7] S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato,
and K. Jenkins. “Asynchronous interlocked pipelined
CMOS circuits operating at 3.3-4.5 GHz,”
in IEEE ISSCC Digest of Technical Papers, pp. 292–293,
Feb. 2000.

[8] M. Singh, and S.M. Nowick. “High-throughput
asynchronous pipelines for fine grain dynamic datapaths,” in
Proc. of ASYNC, pp. 198–209, March 2000.

[9] M. Singh, and S.M. Nowick. “Fine-grain pipelined
asynchronous adders for high-speed DSP applications” in
Proc. of IEEE Computer Society Annual Workshop on VLSI,
Orlando, FL, pp. 111–118, April 2000.

Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC�02)
1522-8681/02 $17.00 © 2002 IEEE

[10] T.E. Williams, and M.A. Horowitz. “A Zero-overhead self-
timed 160ns 54b CMOS divider,” in ISSCC Digest of
Technical Papers, pp. 98-296, 1991.

[11] A.M. Lines. Pipelined Asynchronous Circuits. M.Sc.
Thesis, California Institute of Technology, June 1995,
revised 1998.

[12] T.E. Williams. Self-Timed Rings and their Application to
Division. Ph.D. Thesis, Stanford University, May 1991.

[13] A.J. Martin, A. Lines, R. Manohar, M. Nystroem, P. Penzes,
R. Southworth, U. Cummings and T. K. Lee. “The Design of
an Asynchronous MIPS R3000 Microprocessor”. In Proc. of
17th Conference on Advanced Research in VLSI, pp. 164-
181, 1997.

[14] A.J. Martin. “The Limitations of Delay-Insensitivity in
Asynchronous Circuits”. Sixth MIT Conference on Advanced
Research in VLSI, ed. W.J. Dally, pp. 263-278, 1990.

[15] C. L. Seitz. “System Timing,” in Carver A. Mead and Lynn
A. Conway, editors, Introduction to VLSI Systems, Chapter
7. Addison-Wesley, 1980.

[16] K. Fant, R. Stephani, R. Smith and R. Jorgensen. “The
Orphan in 2 Value Null Convention Logic”, Internal
Technical Report, Theseus Logic, 1998.

[17] T.-A. Chu. “Synthesis of Self-Times VLSI Circuits from
Graph-Theoretic Specifications”, Internal Report:
MIT/LCS/TR-393, June 1987.

[18] A. J. Martin, “Programming in VLSI: From Communicating
Processes to Delay-Insensitive Circuits” in Hoare, C. A. R.
editor, Developments in Concurrency and Communication,
UT Year of Programming Series, pp. 1-64, 1989.

[19] I.E. Sutherland. Micropipelines. Communications of the
ACM, vol.32, no.6, pp. 720–738, June 1989.

[20] H. Kim, K. Stevens, and P.A. Beerel. “Relative Timing
Based Verification of Timed Circuits and Systems”. To
appear in Proc. of ASYNC, April 2002.

Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC�02)
1522-8681/02 $17.00 © 2002 IEEE

