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Abstract 
 

This paper introduces two new high-speed quasi delay 
insensitive (QDI) asynchronous pipeline templates. These 
new high throughput templates support complex non-linear 
pipeline structures and are well suited for fine-grain 
pipelining. Timing analysis and HSPICE simulations show 
that these templates are 20% and 40% faster than known 
QDI counterparts. 

1. Introduction 

Asynchronous design is increasingly becoming an 
attractive alternative to synchronous design because of its 
potential for high-speed, low-power, reduced 
electromagnetic interference, and faster time to market [1], 
[2], [3]. To support these design efforts, numerous design 
styles and supporting CAD tools have been developed. For 
low-speed low-power applications, Phillips Research has 
developed a comprehensive CAD-supported design flow 
based on a high-level language called Tangram [4]. 
University of Manchester has developed a similar system 
based on Balsa [5] to support low-power medium-speed 
applications including embedded microprocessors.  For 
high-speed applications, numerous fine-grain pipelining 
techniques have been developed [6], [7], [8], [9], [10], [11], 
[12]. Most of these pipeline strategies, however, achieve 
high-performance at the cost of introducing numerous types 
of timing assumptions, ranging from ultra-aggressive to 
easily-satisfiable, that complicate the design process. In 
particular, these timing assumptions must be accounted for 
during floorplanning, placement, transistor sizing and 
verified pre- and post-layout. In fact, the more aggressive 
timing assumptions are expected to become increasingly 
difficult to satisfy in ultra-deep-submicron design because 
of increased variance in nominal delays.   

The design methodology proposed by Caltech is 
perhaps the most robust using delay-insensitive 
communication between quasi delay insensitive (QDI) 
pipeline templates [11] [14]. Although focused on ease of 
design using quasi delay insensitive templates, this 

methodology achieves reasonable performance through 
fine-grain pipelining and parallelism [13]. 

This paper proposes two new templates that provide 
significant performance improvements over those proposed 
by Caltech without sacrificing quasi delay insensitivity. The 
key idea is to reduce the complexity of internal circuitry by 
intelligently reducing concurrency and using an additional 
wire for communication between pipeline stages. We 
propose two templates: one that is a half-buffer which 
requires two pipeline stages to hold one data token and one 
full-buffer template that can itself hold one data token.  

The remainder of this paper is organized as follows. 
Section 2 gives background on asynchronous pipelines, 
reviews several existing QDI pipeline templates, and 
discusses several issues associated with non-linear pipelines.  
Sections 3 and 4 present the new templates in detail, 
including the protocol, implementation, and timing analysis.  
Finally, experimental results, comparisons, and conclusions 
are given in Sections 5 and 6. 

 

2. Background 

This section first gives background on commonly used 
asynchronous data representation schemes. Then, it reviews 
three asynchronous pipelining styles: Caltech’s Weak-
Conditioned Half Buffer (WCHB), Precharged Half Buffer 
(PCHB), and Precharged Full Buffer (PCFB) templates [11]. 
Lastly, issues with non-linear pipelines and the role of input 
completion sensing are reviewed.  

2.1 Data Representation Schemes 

An asynchronous communication channel is a bundle 
of wires and a protocol to communicate data between a 
sender and a receiver. The encoding scheme in which one 
wire per bit is used to transmit the data and an associated 
request line is sent to identify when data is valid is called 
single-rail encoding and is shown in Figure 1. The 
associated channel is called a bundled-data channel. 
Alternatively, if the data is sent using two wires for each bit 
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of information, the encoding is called a dual-rail channel. 
Extensions to 1-of-N encoding also exist.  

Both single-rail and dual-rail encoding schemes are 
commonly used, and there are tradeoffs between each.  
Dual-rail and 1-of-N encodings allow for data validity to be 
indicated by the data itself and are often used in QDI 
designs. Single-rail, in contrast, requires the associated 
request line, driven by a matched delay line, to always be 
longer than the computation. This latter approach requires 
careful timing analysis but allows the reuse of synchronous 
single-rail logic. 

 
Figure 1. Pipeline Channels 

2.2 WCHB 

Figure 2 shows a WCHB template for a linear pipeline 
with a left (L) and right (R) channel and an optimized 
WCHB dual-rail buffer. L0 and L1, R0 and R1 identify the 
false and true dual rail inputs and outputs, respectively. 
Lack and Rack are active-low acknowledgment signals. 
Note that we do not show staticizers that are required to 
hold state at the output of all C-elements.   

The operation of the buffer is as follows. After the 
buffer has been reset, all data lines are low and 
acknowledgment lines, Lack and Rack, are high. When data 
arrives by one of the input rails going high, the 
corresponding C-element output will go low, lowering the 
left-side acknowledgment Lack. After the data is propagated 
to the outputs through one of the inverters, the right 
environment will assert Rack low, acknowledging that the 
data has been received. Once the input data resets, the 
template raises Lack and resets the output.  

Since the L and R channels cannot simultaneously hold 
two distinct data tokens, this circuit is said to be a half 
buffer or has slack ½ [11]. This WCHB buffer has a cycle 
time of 10 transitions, which is significantly faster than 
buffers based on other QDI pipeline templates. 

Another feature of the WCHB template is that the 
validity and neutrality of the output data R implies the 
validity and neutrality of the corresponding input data L. 
This is called weak-conditioned logic [15] and is the same 
logic used in fine-grain pipelines proposed by Theseus logic 
[16]. We will discuss its advantages and disadvantages after 
we discuss non-linear pipeline templates. 

 
Figure 2. WCHB 

2.3 PCHB and PCFB 

Figure 3(a) shows the template for a pre-charged half-
buffer (PCHB). Unlike the WCHB, the test for validity and 
neutrality is checked using an input completion detector. 
The input completion detector is denoted as LCD and the 
output completion detector as RCD.  

The function block need not be weak-conditioned logic 
and thus can evaluate before all the inputs have arrived (if 
the logic allows). However, the template only generates an 
acknowledgment signal Lack after all the inputs have 
arrived and the output has evaluated. In particular, the LCD 
and the RCD are combined using a C-element to generate 
the acknowledgment signal.  

A few minor aspects of this template should also be 
pointed out. First, because the C-element is inverting the 
acknowledgment signal is an active-low signal.  Second, the 
Lack signal is often buffered using two inverters before 
being sent out. Another two inverters are also often added 
to buffer the internal signal en that controls the function 
block. For simplicity, these buffering inverters will not be 
shown in the figures in this paper.  

The protocol for a PCHB pipeline stage is captured by 
the STG [17] for a three-stage pipeline illustrated in Figure 
4(a). From the STG, it is possible to derive the pipeline’s 
analytical cycle time:  

TPCHB =3. tEval + 2. tCD + 2. tc+  tprech 
Due to the extra buffering and bubble shuffling, the cycle 
time generally amounts to 14 gate delays or transitions.   

The PCFB template and its STG are shown in Figure 
3(b) and Figure 4(b). The PCFB is more concurrent than 
the PCHB because its L and R handshakes reset in parallel 
at the cost of requiring an additional state variable. The 
PCFB analytical cycle time is: 

 TPCFB =2. tEval + 2. tCD + 2. tc+  tprech 

which generally amounts to 12 transitions. Here tCD takes 
two transitions, one of the C-elements takes one transition, 
and the other takes two transitions.   

2.4 Non-Linear Pipeline Structures 

Recently many new asynchronous pipelines have been 
introduced. However most of them have been targeted for 
linear pipeline applications such as FIFOs. Real designs, 
however, require more complicated non-linear pipeline 
structures. In particular, linear pipeline stages have only a 
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single input and a single output channel, where as non-
linear pipelines stages can have multiple input and output 
channels. The QDI templates are easily extended to non-
linear pipelines and now we review the underlying issues.  

To introduce these issues we focus on forks and joins. 
A join is a pipeline stage with multiple input channels 
whose data is merged into a single output channel.  A fork is 
a pipeline stage with one input channel and multiple output 
channels. Complex forks and joins can involve 
conditionally reading from or writing to channels based on 
the value of a control channel that is unconditionally read, 
as in a merge or split channel. Abstract illustrations of these 
channels are shown in Figure 5. 

Since a fork has multiple output channels, it must 
receive an acknowledgment signal from all of them before 
it precharges. A join, on the other hand, receives inputs 
from multiple channels and must broadcast its 
acknowledgment signal to all its input stages.  

A join acts as a synchronization point for data tokens. 
The acknowledgment from the join should only be 
generated when all the input data has arrived. Otherwise a 
stage feeding a join, referred to as A, that is particularly 
slow in generating its data token may receive an 
acknowledgment signal when it should not, violating the 4-
phase protocol. If the acknowledgment signal is deasserted 
before the slow stage A generates its token, the token is not 
consumed by the join, as it should be. In fact, this token 
may cause the join to generate an extra token at its output, 
thereby corrupting the intended synchronization. 

A conditional split is a combined fork and join where a 
control   channel is   used  to  determine   which  output   is 

 

 
Figure 3. a) PCHB and b) PCFB templates 

 

 
Figure 4. a) PCHB and b) PCFB STG 

generated. The control may indicate to send the input data 
to any of the output channels, any combination of the output 
channels, or none of them. The third option is also known 
as a skip.   

A conditional join is a join where the control signal, 
select, comes from another pipeline stage. The select signal 
controls which incoming channel should be read.  

 

 
Figure 5. Non-linear pipelines. 

2.5 Why Input Completion Sensing? 

As mentioned above, validity should be checked on all 
input channels before the acknowledgment signal is 
asserted to prevent the incorrect insertion of a token caused 
by a slow/late input channel. Neutrality should be checked 
to guarantee that the previous stages have been precharged, 
so that the acknowledgment signal is not deasserted too 
early, thereby violating the four-phase protocol on any stage 
slow to precharge. 

The templates presented in this section check validity 
and neutrality in different ways. Because the function block 
in WCHB template is weak-conditioned, the output 
completion detector implicitly checks validity and neutrality 
of the input data token. In the WCHB buffer the weak 
conditioned function block is a simple C-element. However, 
for more complex non-linear pipelines, weak-conditioned 
function blocks unfortunately require complex NMOS and 
PMOS networks. This results in slower forward latency and 
bigger transistor sizes. As an example, a weak-conditioned 
dual-rail OR is shown in Figure 6. 

 
Figure 6. An OR gate implementation using weak 

conditioned logic 
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In contrast, the PCHB and PCFB check the validity and 
neutrality of the input data explicitly with a distinct input 
completion detector. This enables the function block to use 
smaller and faster pre-charge logic function blocks. The 
cost of this alternative is that it requires more transistors 
and has more transitions per cycle.  

3. New QDI Templates 

One optimization that can be applied to the PCHB and 
PCFB templates is to merge the LCD of one stage with the 
RCD of the other by adding an additional request line to the 
channel. This is shown in Figure 7 for a PCHB template.  

 
Figure 7. Optimized PCHB for a 1-of-N+1 channel 

 
The request line indicates the assertion/deassertion of 

the input data, as in the bundled-data channel. However in 
contrast to a bundled-data channel, the data is sent using 1-
of-N encoding, yielding what we call a 1-of-N+1 channel. 
The request line, at least from the channel point of view, 
may appear redundant. However, the request line enables 
the removal of the input completion detector thereby saving 
area and reducing capacitance on the data lines. Moreover, 
the request line does not significantly impact performance, 
the template is still QDI, and the communication between 
stages remains delay-insensitive.  

In this section we propose two new 1-of-N+1 QDI 
templates that intelligently reduce concurrency to reduce 
the stack size of the function blocks and thereby improve 
performance.  

3.1 RSPCHB 

We propose a new pipeline template that eliminates the 
need of the internal en signal of the PCHB template, 
thereby reducing the transistor stack sizes in the function 
block. We refer to this new QDI pipeline template, 
illustrated in Figure 8(a), as a Reduced Stack Precharged 
Half Buffer (RSPCHB). A specific form of this template for 
dual-rail data is shown in Figure 8(b). Notice that we 
optimized the RCD block by tapping its inputs before the 
output inverter and using a NAND gate instead of an OR 
gate.  

The RSPCHB facilitates the removal of the internal 
enable signal by reducing concurrency that effectively does 
not improve performance. More specifically, in the PCHB 

template the output of the LCD and RCD are combined 
using a C-element to generate the acknowledgment signal 
Lack. This supports the integration of the handshaking 
protocol with the validity and neutrality of both input and 
output data, which removes the need for the function block 
to be weak-conditioned, but also requires the use of the en 
signal. It is this replacement however that introduces more 
concurrency than is necessary.   

In particular, in the case of a join, the non-weak-
conditioned function block may generate an output as soon 
as one of the input channels provides data. In response, the 
RCD of the join will assert its output. Meanwhile, any 
subsequent stage can receive this data, evaluate, assert both 
its LCD and RCD outputs, and assert its acknowledgment 
signal. Although the join can receive this acknowledgment, 
it will not precharge until after en is asserted. The en signal 
delays the precharge of the circuit until after the 
acknowledgement to the input stages has been asserted. 
This delay is critical to prevent the precharge from 
triggering the RCD to deassert which would prevent the C-
element from ever generating the acknowledgment.  

If only the generation of the acknowledgment signal 
from any stage subsequent to the join was delayed until all 
input data to the join has arrived and been acknowledged, 
then the en signal could be safely removed.  In fact, such a 
delay of the acknowledgement would not generally impact 
performance because the join is the performance bottleneck 
for the subsequent stages. Therefore, this added 
concurrency is essentially unnecessary. 

The unique feature of the RSPCHB is that it derives the 
request line from the output of the C-element instead of the 
RCD. (In particular, since the output of the C-element is 
active low and the request line is active high, the output of 
the C-element is sent through an inverter before driving 
Rreq.) The impact of this change is that the 
assertion/deassertion of Rreq is delayed until after all Lreq’s 
are asserted/deasserted. As a consequence, the 
acknowledgment from a subsequent stage of the join may 
be delayed until well after its data inputs and outputs are 
valid. More specifically, the stage will delay the assertion of 
its acknowledgment signal until all Lreq’s are asserted 
which can occur arbitrarily later than the associated data 
lines becoming valid. This extra delay, however, has no 
impact on steady-state system performance because the join 
stage is the bottleneck, waiting for all its inputs to arrive 
before generating its acknowledgement.  In fact, this change 
yields a template with no less concurrency than WCHB. 

The advantage of this generation of the request line is 
that the function block does not need to be guarded by the 
enable signal. In particular, it is now sufficient to guard the 
function block solely by the Pc signal because the Pc signal 
now properly identifies when inputs and outputs are valid. 
Namely, the function block is allowed to evaluate when Pc 
is deasserted which occurs only after all inputs and outputs 
data lines are reset. Similarly, it is allowed to precharge 
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when Pc is asserted which occurs only after all input and 
output data lines are valid. 

The RSPCHB, depicted in Figure 8a and 8b is still 
QDI, however, the communications along the input 
channels become QDI instead of delay-insensitive. In 
particular, the relative timing assumption that must be 
satisfied is that the data should reset before Rack is de-
asserted. This timing assumption is necessary to prevent re-
evaluation of the block with old data. If we assert that the 
fork between the function block, the RCD, and the next 
stage is isochronic [18], this assumption is satisfied. In 
particular, the data line at the receiver side is then 
guaranteed to reset before the request line Rreq resets 
because only after the data lines reset can the RCD trigger 
the C-element, subsequently triggering Rreq. The analytical 
expression for the timing margin associated with this 
isochronic fork assumption can be derived from the abstract 
STG of the RSPCHB shown in Figure 9. In particular, the 
delay difference between the resetting of the data and the 
associated request line should be less than: 

TMargin =2. tInv + 1. tCD + 3. tc 
This margin is between 6 and 8 gate delays depending on 
buffering and is easily satisfied with modern routers. 

As an alternative, the completion sensing circuitry can 
also be tapped before the output inverters, as shown in 
Figure 8c, reducing the output capacitance and enabling the 
use of a NAND gate rather than a NOR gate for completion 
sensing. Interestingly, this optimization preserves QDI 
properties when applied to the original PCHB template. In 
our design, however, because of the 1-of-N+1 channel, this 
optimization breaks QDI. In particular, the design will fail 
if the output buffers are tremendously slow in comparison 
with the associated request line.  The same relative timing 
constraint that Rack is de-asserted after the dta is reset still 
guarantee correct operation. The associated timing margin, 
however, is slightly reduced.  

The analytical cycle time of the RSPCHB can be 
derived from the STG shown in Figure 9 as: 

TRSPCHB = Max( 3. tEval + 2. tCD + 2. tc+  tprech , 
              tEval + 2. tCD + 4. tc+  tprech ) 
With bubble shuffling, RSPCHB and PCHB have equal 

numbers of transitions per cycle. The advantage of 
RSPCHB is that the lack of an LCD and reduced stack size 
of the function block, which reduces capacitive load, and 
yields significantly faster overall performance. The cost of 
this increase in performance is that it requires one extra 
communicating wire between stages. 

 
Figure 8. a) Abstract and b) detailed QDI RSPCHB 

pipeline template. c) Non-QDI optimized alternative.  

 
 

 
Figure 9. The STG of the RSPCHB 

 

 Note that there is a striking similarity between the 
control of our base RSPCHB and the basic micropipeline 
structure proposed by Sutherland [19]. Both pipelines use a 
C-element and a single inverter as the control. However, 
our proposed template uses 1-of-N signalling and output 
completion sensing instead of matched delay lines to 
generate the done signal. In addition, our templates use a 
four-phase handshaking protocol instead of a two-phase 
protocol. 

A fork can be implemented easily by either using a C-
element to combine the acknowledgment signals from the 
forking stages or by combining them by increasing the stack 
size of the function block. Similarly a join can be 
implemented, by combing the request lines in the C-element 
and forking back the acknowledgment signal.  
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Figure 10. Conditional a) join and b) split using 

RSPCHB 

 

Consider the slightly more complicated template for a 
conditional join in which a control channel S is used to 
select which input channel to read and write the read data 
token to the single output channel illustrated in Figure 10(a). 
Note that unlike micropipeline-based architectures, the 
control and data channels are indistinguishable in nature. 
(Section 3.3 describes how an FSM may generate such 
control channels.) The template has one C-element per 
input channel, each responsible for generating the 

associated acknowledgement signal. Each C-element is 
triggered by not only the RCD output, but also the 
corresponding control channel bit. The collection of C-
elements are combined using a NOR gate to generate the 
Lracks because the C-elements are mutually exclusive.  This 
template can be easily extended to handle more complex 
conditionals in which multiple inputs can be read for some 
values of the control. 

The template for the conditional fork is shown in 
Figure 10(b). Here, the functional block, the RCD and the 
C-element are repeated for each output channel. The select 
data lines ensure only one function block evaluates. All C-
elements are combined using an AND gate to generate the 
acknowledgement for the select channel. (This is because 
both the C-element outputs and the acknowledgement signal 
are active low.) This template can easily be extended to 
handle the generation of multiple outputs in response to 
some values of the control. 

A common example of a conditional fork is a skip in 
which depending on the control value the input is consumed 
but no output is generated. The implementation has a skip 
output acting as an internal N+1 output rail that is not 
externally routed and is triggered upon the skip control 
value.   

Figure 11 shows a one-bit memory implemented using 
a RSPCHB template. A and C represent the input and 
output channels. B is the internal storage. S is an input 
control channel that selects the write or read operation. 
When S0 is high, the memory stores the value at the input 
channel A to the internal storage B. When S1 is high, on the 
other hand, the memory is read, that is, the stored memory 
value is written to the output channel C. For a write, both 
input data and control channels are acknowledged, while 
for a read, only the control channel is acknowledged. 

The write and read operations are as follows. After 
reset, the memory, stored in the dual-rail Memory Unit, MU 
(similar to [11]) is initialized to some value and one of the 
rails of the internal signal B is high. When an input A is 
applied and S0 is high, if a value opposite to the value 
already stored in the memory is written, then first both rails 
of B are lowered and then one of them is asserted high, 
thereby storing the data. On the other hand if the value to be 
written is the same value already stored in the memory then 
the there is no transition and value remains the same. The 
Memory Completion Detector, MCD, detects that the value 
in the memory is updated, and asserts its output.  The 
output of the MCD as well as the request lines from the data 
and control channel drive a C-element, which generates the 
acknowledgment signal LackA. When S1 is high, on the 
other hand, the internal data stored in B is sent to the output 
channel C. When an acknowledgment is received from the 
output channel C, the outputs are reset but the data stored 
remains unchanged. The control channel S is acknowledged 
for both write and read operations using an AND gate 
driven by the two C-element outputs.  
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Notice that the memory is actually implemented by 
merging two RSPCHB units. The first one is used to store 
data (write), and the second one to send it to the outputs 
(read). The first unit has an MCD that detects the 
completion of the write operation and resets when all inputs 
are lowered.  

The MCD can be simplified by replacing the PMOS 
transistors driven by A0 and A1 with a PMOS transistor 
driven by LackA. However this requires that the delay 
difference between the data lines of channel A and its 
associated request line is not long enough to cause short 
circuit current. This restriction can be removed by also 
controlling the NMOS stack by also adding one more 
NMOS transistor driven by the LackA signal. The overall 
benefit however is not clear.  

 
Figure 11. A RSPCHB 1-bit memory 

 

3.2 RSPCFB 

Our second new 1-of-N+1 QDI pipeline template is a 
full buffer constructed by merging our RSPCHB with a 
modified WCHB. An abstract illustration of this reduced 
stack pre-charged full buffer (RSPCFB) is shown in Figure 
12(a) and a more detailed implementation for dual-rail data 
is shown in Figure 12(b).  

The RSPCFB has two new features. First, the inverters 
from both of the half buffers have been removed to keep the 
forward latency of the new template at two gate delays. We 
assert that the inverters between the two half buffers can 
safely be removed because the RSPCHB has little gate load 
and wire load can be minimized by placing/routing this 
template as a single unit. The output inverters are only 
necessary if this unit is driving a significant load and can be 
added as necessary. (However a staticizer, not shown, is still 
necessary.) Second, the WCHB has to be modified to accept 
an input request signal and generate an output request 
signal. This input request signal drives a C-element whose 
other input is the RCD output. This C-element then triggers 
the internal acknowledgement to the RSPCHB part instead 
of the RCD alone. In addition, the output request signal is 
implemented by simply tapping of a signal from the RCD 
output. One other difference is that the request signal is now 

active low because the inverters have changed locations 
(i.e., bubble shuffling [18]). 

The circuit operates as follows. The RCD of the 
RSPCFB part detects the evaluation of the function block 
and asserts its output. The output of the RCD drives the C-
element, which generates the acknowledgment signal Lack 
to the previous stage after all the request lines associated 
with the data also arrive. If the next stage is ready to accept 
new data, the acknowledgment signal Rack should already 
be deasserted, allowing the C-elements in the forward path 
to pass the data to the next stage. Subsequently, the 
WCHB’s RCD will assert its output asserting the request 
signal to the next stage. The output of the RCD also drives 
the C-element Cb, which asserts the internal 
acknowledgement back to the RSPCFB part, allowing the 
function block to precharge. When the acknowledgment 
signal Rack is deasserted, the C-element in the forward path 
will deassert its outputs. This will trigger the WCHB’s RCD 
to deassert Rreq, the C-element Cb to deassert the internal 
acknowledgement back to the RSPCHB, and thereby enable 
the function block to re-evaluate.  
 

 
Figure 12. a) Abstract and b) detailed RSPCFB 

 
Notice that the Rreq of the RSPCFB is taken from the 

output of the RCD instead of the C-element, unlike the 
RSPCHB. This is because the WCHB part has weak-
conditioned logic, which will not reset until all inputs, 
including inputs from the RSPCHB part, have reset. This 
implicitly avoids the problem of preventing the assertion of 
the acknowledgement back to the RSPCHB part that 
delaying Rreq solved. The advantage of this is that the Rreq 
can be generated earlier. The disadvantage is that this 
reduces are timing margin on input channels to joins to 5 to 
7 gate delays, depending on buffering.  

The RSPCFB has 10 transitions per cycle, less than 
Caltech’s PCFB, which has 12 transitions. The analytical 
cycle time, using the STG in Figure 13, can be expressed 
as: 

TRSPCFB = Max( 3. tEval + 2. tCD + 2. tc+  tprech , 
        2. tEval + tCD  + 3. tc+  tNAND) 

 

The RSPCFB can be extended to handle non-linear 
pipeline structures in the same way as the RSPCHB without 
any additional timing assumptions. 
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Figure 13. The STG of the RSPCFB 

 

3.3 FSM Design 

One of the most important aspects of a complete 
system design is the implementation of the controller. An 
FSM is actually a state holding circuit, which only changes 
its state when the expected inputs for that state are available. 
One way to build an asynchronous FSM is to feed the 
outputs of the pipeline stage back to its inputs using buffers 
to hold the data (also proposed in [11]). This technique is 
similar to the synchronous case. In addition it requires no 
new circuits and can be easily applied to template-based 
design. Figure 14 shows an abstract FSM.  

 

 
Figure 14. An abstract asynchronous FSM 

Each channel either is an input, an output, or holds 
state. The next and current state channels can be 
implemented with either 1-of-N+1 channels, ideally suitable 
for one-hot state encoding of the FSM. The next state and 
the output logic blocks are complex QDI pipeline stages, 
which can have multiple function blocks inside. These 
multi-input multi-output conditional blocks are 
implemented the same way as the conditional read and 

write blocks shown previously.  
The simplicity of this method for designing FSMs 

allows all known synchronous design techniques for 
generating Boolean next state and output expressions 
directly to be applied. Also the next state logic can be 
implemented as several stages of pipelined logic, reducing 
the number of necessary feedback buffers. Aside from using 
feedback buffers, which for a high number of states can 
yield a large circuit there are also other ways to design 
circuits that hold state.  

4. Simulation Results 

Both formal verification and HSPICE simulations were 
performed to check the correctness of functionality and to 
measure performance of all the proposed linear and non-
linear pipelines.  

We used the relative-timing verification tool RTCG 
[20] to verify the QDI property and the proposed relative-
timing constraints of both RSPCHB and RSPCFB base 
templates. A structural blif circuit was generated for each 
template along with a signal transition graph (STG) 
description of the environments. For the optimized 
RSPCHB template, the tool automatically generated 
relative timing constraints that were sufficient to guarantee 
correctness, but more complex than the relative-timing 
constraint that we manually derived. Using the tool 
interactively, however, we also were able to verify the 
correctness of our manually-derived relative timing 
constraints.  

HSPICE simulations were performed using a 0.25 
TSMC process with a 2.5V power supply at 25

o
C.  The 

purpose of these simulations was to confirm the results 
obtained by the Verilog simulations, and to compare the 
throughputs of the proposed pipelines with the bubble-
shuffled PCHB and PCFB pipelines presented in the 
background section. Since the goal was comparison, no 
attempt was made to fine-tune the transistor sizing to 
achieve optimum performance. In particular, all transistors 
were sized in order to roughly achieve a gate delay equal to 
a small inverter (WNMOS=0.8um, WPMOS=2um, and 
L=0.24um) driving a same-sized inverter.  For the purposes 
of this comparison, wire delay also has been ignored. 

For the half buffers, the PCHB and the RSPCHB, a 
linear dual-rail pipeline of buffers with 60 stages has been 
constructed to achieve a static slack of 30, which means that 
it can hold 30 distinct data tokens. For the full buffers, the 
PCFB and the RSPCFB, 30 stages have been used to 
achieve the same static slack. All pipelines can hold 30 
distinct tokens. Figure 15(a) shows throughput versus 
tokens triangles for the half buffers and Figure 15(b) shows 
them for the full buffers. The triangles for the PCHB and 
PCFB are indicated with the dotted lines. Approximately 15 
distinct points have been obtained per pipeline for the 
triangle graphs using HSPICE simulation. One key result 
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obtained from this simulation is the dynamic slack of each 
pipeline, which is the number of tokens required to achieve 
maximum throughput [10], [11]. 

The PCHB achieves a maximum throughput of 
772MHz with a dynamic slack of 7.3. The RSPCHB is 
faster with a maximum throughput of 920MHz and a 
dynamic slack of 8.25. The throughput improvement is 
approximately 20%.   For the full buffers, the PCFB 
achieves a maximum throughput of 707MHz and a dynamic 
slack of 3.7. The RSPCHB is faster with a maximum 
throughput of 1000MHz and a dynamic slack of 5.9. The 
speed improvement is approximately 40%, however due to 
the C-elements in the forward path of the RSPCFB, the 
forward latency is about 15% slower.  In both the half and 
full buffer, we achieved higher dynamic slack. This means 
that our templates support more system-level concurrency 
and higher stage utilization. 

Notice that although the PCFB has 12 and the PCHB 
has 14 transitions per cycle, the PCFB was slower. This is 
partially due to the heavier load on the internal wiring in the 
PCFB compared to the PCHB.  Clearly, careful transistor 
sizing and buffering can improve the performance of all 
pipeline templates, however, we expect the relative 
performances to remain approximately the same.   

 

 
Figure 15. Throughput versus tokens for a) the PCHB 

and RSPCHB and b) the PCFB and RSPCFB linear 
pipelines 

5. Conclusions 

This paper has introduced new high-speed QDI 
asynchronous pipeline templates for non-linear dynamic 
pipelines, including forks, joins, and more complex 
configurations in which channels are conditionally read 
and/or written. Timing analysis and HSPICE simulation 
results demonstrate that our new RSPCHB achieves ~20% 
throughput over its PCHB counterpart and our new 
RSPCFB achieves ~40% throughput improvement over the 
PCFB counterpart. 
 

6. Acknowledgements  

This research has been partially supported by NSF 
Grant CCR-0086036 and gifts from both TRW and Fulcrum 
Microsystems. We would also like to thank Andrew M. 
Lines for clarifying several points in regards to his thesis 
and Jim Garside for shepherding this paper through the 
revision process. 
 

References 
[1] K.S. Stevens, S. Rotem, R. Ginosar, P.A. Beerel, C.J. Myers, 

K.Y. Yun, R. Kol, C. Dike, M. Roncken, “An asynchronous 
instruction length decoder,” in IEEE JSSC, Volume: 36 
Issue: 2, pp. 217–228, Feb. 2001. 

[2] W.S. Coates, J.K. Lexau, I.W. Jones, S.M. Fairbanks, and 
I.E. Sutherland.  “FLEETzero: an asynchronous switching 
experiment,” in Proc. of ASYNC, pp. 173–182, March, 2001. 

[3] J.V. Woods, P. Day, S.B. Furber, J.D Garside, N.C. Paver, S. 
Temple, “AMULET1: an asynchronous ARM 
microprocessor”, IEEE Transactions on Computers, 
Volume: 46 Issue: 4, pp. 385 – 398, April 1997. 

[4] J. Kessels, A. Peeters “The Tangram framework: 
asynchronous circuits for low power ”, Proceedings of the 
ASP-DAC 2001, pp. 255 –260, 2001. 

[5] A. Bardsley, D. A. Edwards, “The Balsa Asynchronous 
Circuit Synthesis System”, Forum on Design Languages, 
Sept. 2000.  

[6] I. E. Sutherland, and S. Fairbanks. “GasP: a minimal FIFO 
control,” in Proc. of ASYNC, 2001, pp. 46–53, March 2001. 

[7] S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato, 
and K. Jenkins.  “Asynchronous interlocked pipelined 
CMOS circuits operating at 3.3-4.5 GHz,” 
in IEEE ISSCC Digest of Technical Papers, pp. 292–293, 
Feb. 2000. 

[8] M. Singh, and S.M. Nowick.  “High-throughput 
asynchronous pipelines for fine grain dynamic datapaths,” in 
Proc. of ASYNC, pp. 198–209, March 2000. 

[9] M. Singh, and S.M. Nowick.  “Fine-grain pipelined 
asynchronous adders for high-speed DSP applications” in 
Proc. of IEEE Computer Society Annual Workshop on VLSI, 
Orlando, FL, pp. 111–118, April 2000. 

Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC�02) 
1522-8681/02 $17.00 © 2002 IEEE 



[10] T.E. Williams, and M.A. Horowitz.  “A Zero-overhead self-
timed 160ns 54b CMOS divider,” in ISSCC Digest of 
Technical Papers, pp. 98-296, 1991. 

[11] A.M. Lines.  Pipelined Asynchronous Circuits.  M.Sc. 
Thesis, California Institute of Technology, June 1995, 
revised 1998. 

[12] T.E. Williams. Self-Timed Rings and their Application to 
Division. Ph.D. Thesis, Stanford University, May 1991. 

[13] A.J. Martin, A. Lines, R. Manohar, M. Nystroem, P. Penzes, 
R. Southworth, U. Cummings and T. K. Lee. “The Design of 
an Asynchronous MIPS R3000 Microprocessor”.  In Proc. of 
17th Conference on Advanced Research in VLSI, pp. 164-
181, 1997. 

[14] A.J. Martin. “The Limitations of Delay-Insensitivity in 
Asynchronous Circuits”. Sixth MIT Conference on Advanced 
Research in VLSI, ed. W.J. Dally, pp. 263-278, 1990. 

[15] C. L. Seitz.  “System Timing,” in Carver A. Mead and Lynn 
A. Conway, editors, Introduction to VLSI Systems, Chapter 
7.  Addison-Wesley, 1980. 

[16] K. Fant, R. Stephani, R. Smith and R. Jorgensen. “The 
Orphan in 2 Value Null Convention Logic”, Internal 
Technical Report, Theseus Logic, 1998. 

[17] T.-A. Chu. “Synthesis of Self-Times VLSI Circuits from 
Graph-Theoretic Specifications”, Internal Report: 
MIT/LCS/TR-393, June 1987. 

[18] A. J. Martin, “Programming in VLSI: From Communicating 
Processes to Delay-Insensitive Circuits” in Hoare, C. A. R. 
editor, Developments in Concurrency and Communication, 
UT Year of Programming Series, pp. 1-64, 1989. 

[19] I.E. Sutherland. Micropipelines. Communications of the 
ACM, vol.32, no.6, pp. 720–738, June 1989. 

[20] H. Kim, K. Stevens, and P.A. Beerel. “Relative Timing 
Based Verification of Timed Circuits and Systems”. To 
appear in Proc. of ASYNC, April 2002. 

Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC�02) 
1522-8681/02 $17.00 © 2002 IEEE 


