A Standard-Cell Self-timed Multiplier for Energy and Area
Critical Synchronous Systems *

Kip C. Killpack Eric Mercer Chris J. Myers
Electrical Engineering Department
University of Utah
Salt Lake City, UT 84112

Abstract

This paper describes the design of a standard-cell self-timed multiplier for use in energy
and area critical synchronous systems. The area of this multiplier is bounded by N rather
than N? as seen in more traditional combinational parallel array designs, where N is the
word size. Energy has a polynomial growth with word size, but has a coefficient that is much
smaller than that seen in a combinational array design. Although the multiplier is self-timed,
it can be embedded in a synchronous system appearing as a combinational element. This
paper presents latency, area, and energy estimates for the multiplier implemented at various
word sizes, and compares these numbers with a traditional combinational array multiplier.
The self-timed multiplier uses % the energy and % the area of the combinational design for
a 24-bit word size.

1: Introduction

SONIC Innovations produces a digital hearing aid that presents an interesting optimiza-
tion challenge. The hearing aid filters incoming sound into specific frequency bands that
can be amplified according to a customer’s hearing loss profile. The filter algorithm requires
40 multiplies and 120 additions to be completed on each incoming sample that arrives at a
rate of 20kHz. Key considerations in this hearing aid design are chip energy to maximize
battery life and chip size to minimize production costs. As the filter algorithm operates on
real numbers, a number representation must be chosen that provides a sufficient dynamic
range for sound processing without compromising the energy and area budget. The first
generation hearing aid required 3 floating point adders and 1 floating point multiplier run-
ning on an internal 1.25MHz clock to complete the required number of operations. The
floating point representation was chosen over a fixed point representation to reduce the
impact of the multiplier on the area budget. If the area of the multiplier itself is further re-
duced, then the use of a fixed point representation can be considered. This would mitigate
the complexity of the most common operation, which is addition.

Another important point to consider is the impact of the circuit architecture on future
generations of the hearing aid. As the hearing aid design evolves through fabrication
processes, it is important to consider the impact of routing and scheduling of resources on

Supported in part by NSF CAREER award MIP-9625014, SRC contract 97-TJ-487, a grant from Intel
Corporation, and a Wayne Brown Fellowship.

the energy, area, and timing budget. It is possible to meet a resource budget by designing
an architecture that uses a single fast multiplier. However, having to share and schedule a
single multiplier creates a routing challenge that decreases the area savings of using a single
multiplier. Moreover, in deep sub-micron processes, routing is expensive because the delays
in longer wires dominate gate delays. Thus, routing information over large distances in a
single clock cycle is problematic. For these reasons, the multiplier presented in this work
targets area as its main cost criteria. If the multiplier is small enough, it can be duplicated
numerous times on chip to address scheduling and routing issues without overstepping the
area budget. In addition, because the multiplier is meant to be used in a battery operated
device, it is important to consider energy consumption. If the multiplier design is not low
energy, then the cost of replication on the energy budget would make its use prohibitive.

This paper focuses on the energy and area impact of the multiplier by presenting the
design of a standard-cell self-timed multiplier that can be embedded in synchronous appli-
cations. It is self-timed in that it generates its own timing reference for iterations. The
multiplier bounds area growth by N, where N is the word size of the operands. This results
in a significant area savings when compared to the N? growth seen in combinational imple-
mentations. The self-timed nature of the multiplier frees the environment from distributing
a high speed external clock to perform the multiplier iterations, and it allows the multiplier
to be used like a standard combinational component in a synchronous framework. To show
the potential of the multiplier design, this paper presents energy, area, and latency esti-
mates for the multiplier implemented on various word sizes. It then compares and contrasts
these results to a fully combinational parallel array multiplier.

The remainder of this paper is organized as follows. Section 2 discusses related work in
multiplier design and points out contributions in this work. Section 3 discusses the multipli-
er’s architecture and implementation. Section 4 demonstrates the self-timed control for the
multiplier. Section 5 gives some results for various word sizes and compares them against
a traditional combinational implementation. And finally, Section 6 draws conclusions and
discusses future work for the self-timed design.

2: Related work

Self-timed multiplier designs can be broadly grouped into 2 categories: parallel array and
serial-parallel (i.e., iterative). A parallel array design uses on the order of N2 full adders in a
N x N configuration, and it is often pipelined for increased throughput [1, 3, 5, 9, 10, 13, 17].
The area impact of parallel array designs can be reduced using radix-4 Booth recoding
[2], but Booth recoding does not affect the O(N?) area bound seen in full parallel array
designs. In [4, 7], self-timed and synchronous parallel array designs are compared to show
the power savings found in self-timed design methodologies. Moreover, [7] shows power to
be polynomial in both design styles. Although self-timed parallel array designs are fast,
they require a considerable amount of area and are thus, not appropriate for the hearing
aid application.

Tterative or serial-parallel multipliers generally use on the order of N full adders N
times to complete a given multiplication. This increases the latency of the multiply while
substantially reducing the area. In [12], a delay insensitive design style is employed to
remove internal glitches on all wires to save energy. However, it requires 2 wires to represent
each bit in the multiplication, causing an increase in area. In [15], several self-timed designs

are compared, but all have considerable area penalty to achieve self-timing.

To remove the self-timed area overhead, work in [8], employs a bundled-data design style
to implement an iterative multiplier. Bundled-data design replaces the traditional fixed
frequency clock in synchronous design with individual delay elements that are matched
to the latency of each stage of the design. Thus, each stage has its own unique delay
line to signal the completion of the stage to the controller. Furthermore, [8] builds each
stage’s delay line using elements from the stage’s critical path, and it matches load to the
critical path at each gate. This allows the delay lines to scale evenly with the critical path
delay under voltage, temperature, and process variations. Work in [8] further optimizes the
design by skipping iterations in the algorithm according to the operands (i.e., a 0-bit in the
multiplicand). Although [8] achieves better area than [12], the control for the multiplier
still falls directly on the critical path. This is because a control communication is required
at each stage of the design.

Work in [14] addresses control and latency issues in an iterative multiplier design using a
stoppable clock with a partial parallel array. In a complete parallel array, area is bounded
by O(N?) because for each bit of the multiplicand there is a row of full adders. However,
[14] implements several but not all rows of the parallel array and then reuses those rows
to complete the multiply. This creates a small area multiplier that still has acceptable
latency for a 64-bit word size. In the extreme, the design in [14] would use a single row of
full-adders % times. The % comes from the radix-4 Booth recoding that retires two bits
at a time. The frequency of the stoppable clock is matched to the worst-case critical path
delay in the design. When operands are ready to be multiplied, the clock is started, it
runs a fixed number of iterations, and then stops to wait for the next set of multiplicands.
The stoppable clock removes control from the critical path because communications are
no longer required between each stage of the design. When the clock pulse arrives, it is
assumed that all stages are ready for the next input.

The multiplier presented in this paper uses a similar bundled data design style to that
of [8], however it removes control from the critical path through the use of a stoppable
clock as in [14]. This paper presents an evaluation of the extreme case of the class of
multipliers proposed in [14]. However, with the hearing aid application as the guiding
practical example, this work strives to further optimize area and energy above latency
and throughput. Therefore, in this multiplier design, the extreme case critical path is not
limited to a row of carry save adders as in [14]. Instead this multiplier design includes
the Booth recode with the carry save adders on the critical path. This eliminates a set of
pipeline latches and reduces the number of generated clock cycles needed to complete the
multiplication. As a byproduct of creating a very shallow pipeline and reducing the overall
gate count, energy is reduced.

3: Architecture

The micro architecture for the multiplier is shown in Figure 1. This multiplier encodes
the operands using Booth recoding so that it can handle two’s complement numbers without
any pre or post calculations [2]. Radix-4 Booth recoding is used because it requires only
half the number of iterations required by radix-2 Booth recoding, while the multiples of B
needed are still easily computed during iterations.

The Selector B block outputs multiples of B to the Carry Save Adder Shift Register

Carry Save Adder
Shift Register 3
N l
A :
N+1 B |
0 £ Shift Registerﬂ- N N ¥
B — % |
3 V3 l
3 Decode A |
clock Control newA Partial Prqduct 3
reset Summeation 3
sat N2y Ny !

Stoppable | . __ !
Clock
A PAVA 4
C(0...2N-1)

Figure 1. Architecture for the multiplier.

block according to input from Decode A. Figure 2 shows how the Selector B module works.
In this figure, the B operand comes in on the left, is recoded according to Decode A signals,
and goes out to the Carry Save Adder Shift Register on the right. For radix-4 Booth
recoding, the Selector B block must produce the following multiples of the B operand: B,
—B, 2B, and —2B. The multiplier uses a two’s complement representation, so generating
the multiples of B is a matter of inverting and shifting as appropriate. In order to complete
the two’s complement conversion for —B and —2B, a 1 must be added into the low-order
bit of the running sum of the multiply. The portion of the multiplier which handles this
carry injection is the Resolve circuit.

Because radix-4 Booth recoding retires two bits on each iteration, there are situations
when unresolved carries are shifted out of the Carry Save Adder Shift Register. These
carries must be resolved before the two bits are retired to the final answer. The Resolve
block takes a shifted out carry bit with two shifted out sum bits and adds them together to
resolve the shifted out carry. The architecture for this block is shown in Figure 3. The carry
out of this circuit is fed back around to the same circuit to be added in on the next cycle.
This circuit generates two final answer bits on each cycle which are passed to Shift Register
A for storage. As was mentioned, the Resolve circuit also injects the two’s complement
carry when the Bneg signal from the Decode A block is high.

The Shift Register A block, shown in Figure 4, either loads a new value of A when
beginning a multiply, or shifts the current value of A by two bits towards the least significant
bit. In the figure, the Shift Register A is shifting two by bits from left to right. The Shift
Register A passes its two low order bits along with the last shifted out bit to the Decode

BI NO

BI N1

Bl N2

BI N3

Bl N4

Bl N5

BNEG
W B2B

s1| so

D1
D2 | M4

2

D3

BNEG
D n

Qi
2 =<

W B2B

si| so
DO

D1
D2 | W4

Y

1

D3

BNEG

" W B2B

s1| so

2

fl

s

{]
|

D1
D2 | mxa
D3

BNEG

" W B2B

s1| so
DO

D1
D2 | W4

Y

£l

D3

BNEG

" W B2B

s1| so

D1
Y

D2 | W4

BZERO

BZERO

BZERO

BZERO

BZERO

e
B AND2 A

A

e
B AND2 A

A

e
Ao

N

e
B ANDZ2 A

N

e
B AND2 A

Figure 2. Selector B.

CSA0 K ‘

orct
LT m—pCLK > K
CLR

D

D
iG.R Ul
CsAL
LT m—pCLK
CLR
lCLR
csm2

LT m——pCLK

pr.g
A
s Yp

e
e
Py

<

BNEG

LT m——pCLK

o
e
Py

LT m——pCLK

i CLR RESOLVEO
RESOLVEL

Figure 3. Resolve circuit.

A block. The Decode A block uses these three bits to determine the multiple of B to be
added to the running sum of the multiply. Shift Register A is also used to store the final
answer bits retired from the Resolve block while iterating. The answer bits are shifted in
two at a time on each cycle. When the iterations are completed, Shift Register A holds the
bottom N — 2 bits of the final answer.

The Carry Save Adder Shift Register is a row of full adders feeding flip-flops. The
interconnection between the full adders and flip-flops can be seen in Figure 5. Rather than
having a carry ripple chain, the adders are used in a carry save fashion [6]. This means that
carries are passed to flip-flops to be resolved on the next iteration. Therefore each iteration
has a time cost that is independent of the width of the operands. Shifting is performed on
each iteration by passing outputs of the full adders to flip-flops that are two bits towards
the least significant bit. The high order bit starts in the top right of the figure. Bits are
passed from right to left, until the chain wraps to the bottom row. Then the bits are passed
from left to right.

The Partial Products Summation is a basic ripple adder used to resolve all remaining
carries when the iterations are done. Since less than one third of the total latency is in the
ripple adder, it is not necessary to optimize it.

RESOLVEL RESOLVEO
AINS AN AINS AlN2 AlNL AINO
< o o < o < o q o ¢ o
A LT A\ LT i Lg LT A LT A LT A LT LT
) T > T > T > T > T > T T
Y Y M M Y Y o s ¥y CLR
ig ig ig ig id id §0g—=
o o o o o o o
AL A0 L
o 2 -
0
3
couT3 couT2 couTt couTo g0,
6 8
BZERO Q
BNEG
BB «—
Figure 4. Shift register A and Decode A.
[o %
e Q 3 @ Q 3 & Q
oFECL LT 0 oFECL LT 0 oFCL LT
CLK{ g 1 <u Kl g <m KL g
CLR B4 CLR B5 CLR
—n = —0 G+
R CLR CLR
6
s3 s4 S5
8 5 sl @ sl @ o= =
oFc LT oFca LT oFcL LT
CLK¢—am CLRe—am CLRe—m c?_R "
CLR CLR CLR i
i aR i aR i aR QR
@ a @
. a " = ‘0 ° S o g cSsA0
LT oFe1 LT oFc1 LT oFcL
> B CLK m> K m—poK m> K m—poK n> K
B3 LR B2 R BL R B0
/) i —f 0 l — 0 i — O}—— csa
R CR CLR
s2 si S0
b a2 b a1 IS0 ——— csA2
LT oFcL LT orc1 LT oFc1
B HCLK B HCLK B HCLK
CLR CLR CLR
anh ar ara

Figure 5. Carry save adder shift register.

B ‘ BBar N A

St Critical Path Delay
Start DT
. —)
Pulse Width Delay
Start
Stat | L
Start
B
BBar
A
LT

Figure 6. Stoppable clock design.

4: Control and delay

The control circuit consists of a stoppable clock shown in Figure 6 along with a syn-
chronous state machine. One advantage of having a stoppable clock is that it allows for
local high frequency computation without the need for global distribution of a high fre-
quency clock. This is of critical importance in the hearing aid application as the energy
consumed by a high frequency clock is unacceptable. The clock is made from a ring oscilla-
tor, a one-shot, and stop and start logic. The ring oscillator delay is matched to the worst
case critical path delay in the self-timed circuit. The core of a ring oscillator is a delay
element. A chain of inverters can be used for the delay element; however, inverters do not
scale the same as the components on the critical path with process variation, temperature,
and voltage swings. For a typical 0.6um process with every gate running at the slow cor-
ner, it may take only 18 inverters to match the worst case critical path of this design. In
that same process, if everything is running at the fast corner, 44 inverters are needed to
match the worst case critical path delay. One solution to the mismatch in gate scaling is
to make the delay out of gates that match the critical path [8]. The fanout capacitance for
each gate is also duplicated to help ensure that the scaling of the ring oscillator matches
that of the critical path throughout all conditions. Additional buffers are often added to
delay elements to make them conservative. It is possible to make the additional buffer
delay a dynamically programmable delay so the period of oscillation can be adjusted after
fabrication, and therefore, it does not need to be overly conservative [14].

The state machine starts the ring oscillator by asserting the Start signal high. The ring
oscillator then continues to create pulses out of the one-shot until the oscillator is cut-off
by lowering Start. The state machine stops the ring oscillator when (% + 2) iterations
have been performed. Although the state machine for the control logic is designed using
synchronous techniques, it has some timing assumptions that must be guarded to avoid
erroneously firing the latch trigger when stopping and starting the clock. These timing
assumptions can be verified using ATACS, a tool for the synthesis and verification of timed
circuits [11], using layout timing information from the gates used in the implementation.
Because the Start signal is passed to a portion of the stoppable clock that is sensitive to
glitches, the output logic for this signal must be hazard-free. This is done by encoding the
states of the state machine with a Gray code. Thus, at each step of the state machine, a

Table 1. Latency normalized by N=12 combinational fast.

Self-Timed Combinational

N || Fast ‘ Typ ‘ Slow || Fast ‘ Typ ‘ Slow
12 || 3.36 7.12 | 20.10 || 1.00 | 2.10 5.97
16 || 4.22 8.95 | 25.18 || 1.35 | 2.85 8.10
20 || 5.08 | 10.77 | 30.26 || 1.71 | 3.60 | 10.20
24 || 5.95 | 12.60 | 35.35 || 2.06 | 4.35 | 12.32
28 || 6.81 | 14.42 | 40.43 || 2.42 | 5.09 | 14.44
32 || 7.67 | 16.25 | 45.52 || 2.77 | 5.84 | 16.56

single bit of the state vector will monotonically change. This enables hazard free output
logic implementation.

5: Comparisons

This section compares the self-timed design to a fully parallel combinational multiplier.
This is simply a baseline comparison to understand how the self-timed multiplier performs in
latency, energy, and area. The only difference in operation of the parallel array and the self-
timed multiplier is that the parallel array does multiplications on unsigned positive numbers
rather than signed two’s complement numbers. The array can be used to multiply two’s
complement numbers if the operands are converted to unsigned numbers first and the answer
is converted back to a two’s complement number. These sign-magnitude computations are
not included in the comparisons. Table 1 shows the normalized latency of the self-timed
design compared to the combinational design. The normalization constant is 45.71ns. This
is the latency of the combinational design on the fast corner with N = 12. The latency
calculation includes capacitive loading on large fanout gates. Figure 7 shows latency in
nanoseconds for various sizes of N. The latency for both designs scales linearly with NV,
but the self-timed design has a larger constant. It is important to note that the latency of
both designs can be reduced. If is is known that 1 of the 2 operands requires less dynamic
range, then the self-timed and combinational designs can be changed to take advantage
of that fact. In the hearing aid application, the filter coefficients are constrained to be
in the range of (1,—1). Let N, represent the the number of bits for the coefficients. If
N, =10 then a radix-4 Booth recoded multiplier only needs to perform % = b iterations.
At N = 24 and N, = 10, the latency at the slow corner of the self-timed design can be
reduced to roughly half that shown in Table 1 at N = 24. A similar improvement, of
course, is also possible in the combinational design. With this optimization, the self-timed
multiplier runs at 1.1MHz. An additional optimization for the self-timed multiplier would
be to pipeline the critical path. Currently, the Booth recode, B select, and carry save add
are all on the critical path. These sections could be pipelined to decrease iteration latency
at the expense of adding a few more cycles to fill the pipeline stages. Another approach to
improve latency would be to apply more aggressive circuit styles. In the current design, the
multiplier is restricted to use only basic standard-cells. However, moving to more aggressive
circuit styles would increase design time and complexity. Since one of our goals is simplicity
and ease of design, these alternative circuit styles are not considered here.

Latency Plot of Combinational and Self-timed Designs
T T T T T

e — Combinational
900 [—_— Self-timed 1

800 1

700 T

600 - b

500 - b

Latency in nanoseconds

400 b

300

200

Figure 7. Plot of latency as word size increases.

The energy per operation in this design is compared to that of the synchronous design.
Energy is chosen over power because power depends on the average time it takes to perform
an operation [16]. If the parallel array is run at maximum speed, its power would be far
above that of the self-timed design due to its higher frequency. Therefore, such a comparison
is misleading. The energy per operation is independent of the amount of time each design
takes to multiply and is akin to running each multiplier at the same global clock frequency.
An estimate of energy consumed per operation is obtained using simulation over a large set
of random data. Energy is consumed on a node when it switches either from high-to-low
or low-to-high. The amount of energy consumed in either case is

1
E=-CV?
2CV,

where C' is the output capacitance on that node and V is the voltage swing of the transition.
Energy consumed by an entire design is calculated as

1 2
Eyotal = 5V 2_mCs,
3

where ¢ ranges over all nodes in the design. V is the voltage swing that varies depending
on the process corner. C; is the capacitive load seen at node i. As transistor sizing is not
considered here, input capacitances on gates are assumed to be equal for all gates. This
reduces the capacitive load calculation at node ¢ to C; = FO;C,, where FO; is the fanout
of node 7 and Cjy is a constant gate capacitance. The n; term is the activity factor of node

Energy Profile for Combinational and Self-timed Designs

600 T T T T T T T

—t— Combinational
—_— Self-timed

400

300

Normalized Energy

N

o

o
T

100

100

Figure 8. Plot of energy as word size increases.

i. It is the average number of times node i switches (either high-to-low or low-to-high)
during each multiply. Simulation of a large set of random multiplies is used to find the n;
term for each node.

A plot of normalized energy estimates for various sizes of N is in Figure 8. Energy has
a polynomial growth with word size for both designs, but the coefficient for the self-timed
design is much smaller than the combinational design. Table 2 shows normalized energy
estimates for various sizes of N at different process corners. The polynomial growth of
energy for the self-timed design is most easily seen in the typical corner column of Table 2.
The self-timed design has polynomial growth for energy because it has hardware on the
order of O(N) which is used on the order of O(N) times. The combinational design has
hardware on the order of O(N?) that switches an average of O(N) times per multiply. It is
important to note that the energy estimates assume no correlation between the incoming
operands, so the probability of any input bit making a transition is 50 percent. In the
hearing aid application, there would be less switching frequency since there is correlation
between the filter coefficients and the data samples. Thus, these estimates are conservative.

Figure 9 shows the area plot of the self-timed and combinational multiplier designs. Area
is measured in terms of inverter count. The value is calculated by first counting each type
of gate and flip-flop in each design. Each individual gate count is multiplied by the number
of transistors required to implement the gate or flip-flop, and that number is then divided
by 2 to get the total inverter count. The area calculation includes electrical and fanout
considerations by conservatively adding buffer trees where appropriate. Not captured in
this area calculation is the actual size of the transistors. In addition, for this comparison,
the area due to routing is neglected and is assumed to be of equal cost in both designs.

Area as total inverter count

Table 2. Energy normalized by N=12 combinational slow.

25

x 10

4

Self-Timed Combinational
N || Fast ‘ Typ ‘ Slow || Fast ‘ Typ ‘ Slow
12 || 1.54 | 1.24 | 1.03 1.45 1.19 1.00
16 || 2.53 | 2.03 | 1.67 3.92 | 3.19| 2.65
20 || 3.74 | 3.01 | 2.50 8.47 | 6.80 | 5.59
24 || 5.19 | 4.18 | 3.47 || 15.82 | 12.55 | 10.24
28 || 6.41 | 5.14 | 4.25 || 20.92 | 16.24 | 13.04
32| 7.85 | 6.32 | 5.21 || 27.97 | 21.37 | 16.96

Area Plot of Combinational and Self-timed Designs

T

T

T

T

Combinational
Self-timed

N

Figure 9. Plot of area as word size increases.

Table 3. Area as number of inverters and normalized.

Self-Timed | Combinational
N || Area ‘ Scale || Area ‘ Scale
12 || 1200 | 1.00 3132 2.61
16 || 1420 1.18 5776 4.81
20 || 1640 | 1.37 9220 7.68
24 || 1860 | 1.55 || 13464 | 11.22
28 || 2080 | 1.73 || 18508 | 15.42
32 | 2300 | 1.92 || 24352 | 20.29

This benefits the parallel array which clearly has a larger routing area. The two curves in
Figure 9 have approximately equal area at N = 7. The area growth of the self-timed design
is linear in N, where the combinational design follows N?. Table 3 shows the inverter
count for various sizes of N. The scale factor is the normalized area using the area of the
self-timed design at N = 12 as the normalization constant.

6: Conclusion

This paper details the standard-cell design of a self-timed multiplier. This multiplier
can be embedded in current synchronous systems as a combinational unit without any
interfacing issues. This paper presents a comparison between the self-timed design and
a traditional parallel array design and shows that the area of the self-timed design grows
linearly with word size N. This is a marked improvement over the combinational design
that has N? area growth. Both designs have a polynomial energy growth, but the coefficient
for the self-timed design is much smaller than the combinational design yielding a significant
energy savings. The self-timed multiplier uses % the energy and % the area of that of the
combinational design at N = 24, the target size for the hearing aid application.

As the multiplier is intended to be embedded in a synchronous system, latency cannot
be ignored completely. This paper shows the latency of the self-timed design to be lin-
ear in N, but with a higher constant than that of the combinational design. To address
this shortcoming, this paper suggests two simple optimizations. The iterative portion of
the algorithm has complexity O(N). Thus, reducing N improves latency. N can be re-
duced without compromising dynamic range by considering the hearing aid application the
multiplier is intended for. As the coefficients only require N. = 10 bits for a fixed point
representation, the speed of the multiplier is increased to 1.1MHz where the data sample
has N = 24 bits of representation. In addition to this, the critical path can be pipelined to
speed up the latency of iterations at the expense of iterating a few more times.

Future work for the self-timed multiplier includes an actual physical implementation
optimized for the hearing aid application. This will facilitate the calculation of measured
latency, energy, and area numbers that include transistor sizing and more detailed electrical
considerations. The physical implementation will also allow for characterization of the
stoppable clock. If modules with stoppable clocks are to be used, it is necessary to know
how reliable stoppable clocks can be. Other work includes the application of more aggressive
design styles to optimize the critical path in the multiplier. These design styles do not lend

themselves to standard-cell implementation, but may help to further decrease the latency
of the self-timed design.

7: Acknowledgements

We would like to thank Gerald Wilson and Keith Davis from SONIC Innovations for
guiding us through their hearing aid application and for pointing us towards this research
idea.

References

[1]

[2]

[9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

A. J. Acosta, R. Jiménez, A. Barriga, M. J. Bellido, M. Valencia, and J. L. Huertas. Design and
characterisation of a CMOS VLSI self-timed multiplier architecture based on a bit-level pipelined-
array structure. IEE Proceedings, Circuits, Devices and Systems, 145(4):247-253, August 1998.

A. D. Booth. A signed binary multiplication technique. Quarterly Journal of Mechanical Applied
Mathmatics, 4(2), 1951.

R. G. Burford, X. Fan, and N. W. Bergmann. An 180 MHz 16 bit multiplier using asynchronous logic
design techniques. In Proc. IEEE Custom Integrated Circuits Conference, pages 215-218, 1994.

V. Chandramouli, Erik Brunvand, and Kent F. Smith. Self-timed design in GaAs—case study of a
high-speed, parallel multiplier. IEEE Transactions on VLSI Systems, 4(1):146-149, March 1996.

Jen-Shiun Chiang and Jun-Yao Liao. A novel asynchronous control unit and the application to a

pipelined multiplier. In Proc. International Symposium on Circuits and Systems, volume 2, pages
169-172; June 1998.

L. Dadda. Some schemes for parallel multipliers. Alta Frequency, 34(5):349-356, March 1965.

Jaco Haans, Kees van Berkel, Ad Peeters, and Frits Schalij. Asynchronous multipliers as combinational
handshake circuits. In S. Furber and M. Edwards, editors, Asynchronous Design Methodologies, volume
A-28 of IFIP Transactions, pages 149-163. Elsevier Science Publishers, 1993.

David Kearney and Neil W. Bergmann. Bundled data asynchronous multipliers with data dependant
computation times. In Proceedings of International Symposium on Advanced Research in Asynchronous
Clircuits and Systems, pages 186-197. IEEE Computer Society Press, April 1997.

C. H. Lau, D. Renshaw, and J. Mavor. A self-timed wavefront array multiplier. In Proc. International
Symposium on Circuits and Systems, pages 138-141, 1989.

J. B. Lipsher and K. Maheswaran. A 4-bit asynchronous pipelined multiplier in the Xilinx 4000 series
FPGA. Technical report, University of California, Davis, 1994.

Chris J. Myers. Computer-Aided Synthesis and Verification of Gate-Level Timed Circuits. PhD thesis,
Dept. of Elec. Eng., Stanford University, October 1995.

Christian D. Nielsen and Alain J. Martin. Design of a delay-insensitive multiply-accumulate unit.
Integration, the VLSI journal, 15(3):291-311, October 1993.

0. Salomon and H. Klar. Self-timed fully pipelined multipliers. In S. Furber and M. Edwards, editors,

Asynchronous Design Methodologies, volume A-28 of IFIP Transactions, pages 45-55. Elsevier Science
Publishers, 1993.

Mark Santoro and Mark A. Horowitz. SPIM: A pipelined 64x64-bit iterative multiplier. IEEE Journal
of Solid-State Circuits, 24(2):487-493, April 1989.

J. Sparsg, C. D. Nielsen, L. S. Nielsen, and J. Staunstrup. Design of self-timed multipliers: A compar-
ison. In S. Furber and M. Edwards, editors, Asynchronous Design Methodologies, volume A-28 of IFIP
Transactions, pages 165-179. Elsevier Science Publishers, 1993.

José A. Tierno and Alain J. Martin. Low-energy asynchronous memory design. In Proceedings of

International Symposium on Advanced Research in Asynchronous Circuits and Systems, pages 176—
185, November 1994.

Kenneth Y. Yun, Peter A. Beerel, Vida Vakilotojar, Ayoob E. Dooply, and Julio Arceo. The design and
verification of a high-performance low-control-overhead asynchronous differential equation solver. In

Proceedings of International Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 140-153. IEEE Computer Society Press, April 1997.

