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Abstract. The problem of organizing the temporal behavior of digital systems is discussed. This problem is mainly associated with providing the interface between physical (natural) and logical (artificial) time. The most common method of interfacing is based un a system clock that removes physical time from the behavior models A number of algorithms that can be easily formulated in logical time present a great difficulty in the asynchronous case. The suggested GALA (Globally Asynchronous - Locally Arbitrary) design methodology is based on decomposing the system to a Processors Stratum and a Synchro-Stratum. The synchro-stratum acts as a distributed asynchronous clock that produces local synchro-signals for the processor stratum, which is basically a synchronous prototype. A synchro-stratum, like any asynchronous circuit, interacts with the external devices, including the processor stratum, by handshake. Every local device produces an acknowledgment signal and sends it to the synchro-stratum. The designer can use a wide range of methods to implement this signal (Locally Arbitrary): from a self-timed design to a built-in parallel delay. For various disciplines ouf prototype clocking, corresponding synchro-stratum implementations are suggested. The GALA methodology is illustrated on several design examples, such as a counter with constant response time, one-two-one track FiFo, arbitration-free counterflow processor architecture.

"Problems are divided into unsolvable and trivial ones. " Mathematical folklore.

1 lntoduction

Synchronization is one of the most important problems for digital systems. Experts in hardware and software treat it and solve it in different ways at different levels of the system hierarchy.

The term synchronization assumes the coordination of events (signals, operations or processes) in time. The coordination of events reflects cause-and-etfect relationships between them and is usually determined by the partial order on the set of events extracted in the system. Note that this definition of synchronization is close to the concept of logical time whose how is marked by events. At the same time, any system functions in continuous physical time which is represented by an independent variable and discretized by clock signals.

When people say some events occur synchronously, they usually mean that these events are the consequence of the same set of causes. Such a notion of synchrony is good for both logical and physical times. However, when we talk about a synchronous system, we usually imply that all events in the system can only occur on the ticks of an external clock, i.e. they are additionally synchronized by physical time marks. Such a notion of synchrony is only relevant for the level of system hardware.

The complexity of solving the external clocking problem can be explained, at least, by two reasons:

- The events in the external clock have no cause-and-effect relation to the events in the system. This may result in disrupting the general casual semantics of system behavior.

- The clock signal delivery system is a physical object with a certain precision of functioning. It can only function correctly if its precision corresponds to the required accuracy of synchronization.

Similarly, the term asynchrony is often treated differently by software and hardware experts. Programmers usually treat asynchrony as dependence of the number of steps necessary for obtaining the results from the initial data. Such a consideration is useful only for the estimation of program efficiency. Parallel programming implies that the algorithm steps can proceed concurrently. In this case, program specification uses casual-effect relations between the operations and their partial order relation. This is equivalent to incorporating logical time into the algorithm.

At the hardware level, the flow of logical time is usually measured by physical time units (cycles) generated by the common clock. Using wait operation and well-known synchro-primitives along with the common clock allows one to solve the problems of time behavior in a parallel system, although the processes within it can be locally asynchronous. We call such systems "systems with synchronous concurrency."

When we give up using a common clock, we arrive at systems which are asynchronous in physical time. There are approaches to designing asynchronous hardware which eliminate the common clock from the event coordination process. However, all of them, including self-timing, produce solutions of high complexity and require hardware behavior to be re-specified and, hence, re-designed.

There are four ways of organizing time behavior in hardware: FS   fully synchronous (synchronization from a common clock); FA   fully asynchronous (e.g. self-timing); LAGS   locally asynchronous, globally synchronous; GALS   globally asynchronous, locally synchronous.

FS and LAGS require a clock signal delivery system, the shortcomings of which we have already discussed. FA systems have a number of significant advantages but they are very complicated and break the continuity of hardware development. GALS systems are most attractive as they combine the advantages of both synchronous and asynchronous approaches.

We suggest an idea of designing GALA systems (globally asynchronous, locally arbitrary) which are an extension of GALS systems. In such systems, two types of time coexist: physical time in which physical components of the system operate and logical time that represent the causal semantics. In physical time, asynchruny is treated as unpredictable variations in durations of physical transient processes. In logical time, aaynchrony is treated as variations in the quantity of discrete steps in processes. Physical time can be transformed into logical time by incorporating a common clock or using self-timing. We will speak about global logical time, if the functioning of structural system blocks is coordinated in logical time. Local logica.l time flows inside a structural block.

As we demonstrated in [1 4], an asynchronous system can be decomposed into the synchronization subsystem (Synchro-Stratum) and synchronized subsystem (for example, Processor Stratum). This approach allows one to use synchronous prototypes when constructing an asynchronous system, providing continuity and evolution of hardware. The synchro-stratum acts as a distributed asynchronous clock globally synchronizing the system blocks. It can be built in accordance with the prototype clocking system.

The absence of an external clock requires that the synchro-stratum asyn-chronously interacts with the system blocks. This can be organized as a handshake, which needs signals from the blocks to report the completion of transient processes in them. This task can be solved in many ways, depending on the block type and structure, its size, possible variation of the transient process duration, etc. For example, the completion signal can be produced by a delay incorporated in parallel with the block, by self-timed design or by a start-stop local clock controlled by a synchro-signal counter. It is also possible to use synchro-strata of second and higher hierarchy levels.

Hereafter, we will ignore the internal structure of the system blocks. Only the signals of transient process initiation and completion are important. In this work, we develop the ways of transforming a prototype clock system to the specification of the synchro-stratum which globally synchronizes the system blocks. Another problem tackled here is that of building new, more efficient synchro-strata implementations.

2 Logical and Physical Time. A Didactic Example

When talking about synchronization or synchronous/asynchronous behavior, we inevitably have to discuss the basic concept of time. Not claiming to be in the rank of great researchers of time from Aristotle to Prigo'zhin, we still find it necessary to discuss some fairly general problems relevant to our tasks.

First of all, we should realize that, whenever we talk about synchronous or asynchronous devices, we actually mean the way of synchronizing the device's behavior. The problem is to organize the temporal behavior of the device or, in other words, tu incorporate time into the model of the device. Obviously, we have to clearly define what we mean by the word "time".

Modern science says that time has diadic nature) just like substance. On the one hand, starting from ancient Greeks, time was treated as number (Plato & Aristotle) or as moment (Corpus Hermeticum). It was treated as a reflection of cause-and-effect relationship between events that determines their order. Aristotle is known to have said: "If nothing happens, no time." The Greek tradition was continued by Leibniz who treated time as relation. From this standpoint, time is defined as partial order of events determined by cause-and-effect relationship between them. Note that the McGraw-Hill Encyclopedia of Science &: Technology defines synchronization as "the process of maintaining one operation in step of another."^ Time here is considered discrete; hereafter we will call it logical or discrete time.

The concept of analog time, time as substance, is associated with the name of Isaac Newton who continued and developed the ancient Indo-European conceptualization of time as stretch. Time treated as a continual independent physical variable will be called hereafter physical time. Note that all available definitions of physical time are in some way associated with the procedure of time measurement which can be performed only with a certain degree of accuracy. The measuring procedure provides the link between physical and logical time. The basic measuring tool for this is a clock; it compares the temporal interval between two discrete events in the measured process with the number of also discrete events in the reference process. The correlation of two events is closely associated with the concept of simultaneity which can be treated only as a logical abstraction, attained also with a certain degree of accuracy.^

All the steps of design, from formulating the initial specification to physical development, are in some way concerned with organizing the temporal behavior of the device. We are thus entitled to interpret the design of a synchronization system as creation of the system time.

In spite of the fact that our devices are physical objects functioning in the real physical time, the experts and designers of different profile deal with different types of time and treat differently the system time, as well as the terms "synchronous" and "asynchronous" associated with it.

^ 7th Ed., p. 662

^ The uncertainty of the concept of .simultaneity is the source of electronic arbitration. With some speculation, we can say that temporal discretization is determined by the uncertainty expression in the form of time r = h/AE, where r is the average time of transition from one quantum state to another with the difference of energetic levels AE and h is Planck's constant. When AE ^= lFJ n 6(JUe^ (characteristic energy for advanced micro-electronic device switching), r » ID ^ps. Practically the same value (t » '2 - IU ^ps) is given by calculation of the average switching time of a quantum device when taking up one photon with A w 9UUnm (normal frequency for a fiber line). These values can be treated as approximate digits for a time quantum.

Algorithm and architecture experts deal with logical time. They treat time as a number of a step in a process with discrete states (the number of transitions from one discrete state to another). Asynchronism is treated as variations (for example, data-dependency) of the number of steps in the process (algorithm) from its initialization to obtaining the result. For example, non-restoring division is a synchronous process, while restoring division is an asynchronous one. Other examples are synchronous and asynchronous "pseudo-division" algorithms for calculating elementary functions using "digit-by-digit" methods.

Microelectronics and computer engineering experts deal with physical processes that flow in physical devices and, hence, with analog physical time. Asynchrony for them is associated with uncontrolled variations of time necessary to go from one discrete state to another. The factors crucial to such variations can either be permanent (like, for example, dispersion of technological parameters) or variable (like changes in the operation conditions: temperature, voltage, etc.), as well as data-dependent (for example, length of carry in adders).

Synchronization problems are centered around the interface between physical and logical time. The simplest and most conventional way of providing this interface in a synchronous system is by means of a system clock. The sequence of events in the clock (cycles, synchro-signals, etc.) determines the steps of logical time in the system. The physical time interval between two events must be long enough to mask all the possible variations of the transient process durations. This completely excludes physical time from the consideration and the device model contains only logical time. This is the major advantage of the synchronous approach with a common clock.

In spite of all its advantages, the synchronous approach has a number of shortcomings that become more and more obvious as technology increases performance and integration scale. Most crucial are the difficulties in providing the system of delivering the synchro-signals to the points of their consumption.

An alternative to the synchronous approach is a fully asynchronous model (self-timed, speed-independent, delay-insensitive). The system time is determined by partial order imposed on discrete events in the system. Time is introduced by specifying the cause-and-effect relationship between the events; the interface between physical and logical times is provided by certain mechanisms of detecting the completion of transient processes in the system components.

Putting aside the well-known positive and negative aspects of synchronous and asynchronous models, often cited in the literature, we will focus our attention on the main methodological difference between the two approaches.

In the synchronous approach, the mechanisms that provide the system time are completely separated from the system behavior model.
In the asynchronous approach, the mechanisms that provide the system time are incorporated into the system behavior model and should be. designed together with creation of the initial behavioral specification.
Asynchronous design is considered difficult mainly due to the fact that the behavioral algorithms are usually formulated as synchronous. Translating a synchronous algorithm to an asynchronous one is a fairly complicated task requiring a lot of ingenuity. A brilliant example of such an ingenuity is the delay-insensitive counter with constant response time suggested by Christian D.Nielsen [5].'^

^ Below we will demonstrate how this task is solved automatically in our proposed

Before going further, let us consider an instructive example. Its didactic value, at least to the authors, is not only a chance to illustrate the relationship between logical time in synchronous and asynchronous models. We used this example in the report submitted to Asynch-94. This example was the main target for criticism in the review which declined the report. In order to avoid another fiasco, we will try to discuss this example more carefully.^

Starting from, probably, Hennie, homogeneous automata arrays (or cellular automata arrays) are considered as an excellent model object for studying the features of systems and algorithms. Among the studied models, wave propagation processes in such arrays are of special interest, both practical and theoretical.

Fig.1 shows a synchronous one-dimensional (1D) array of automata. All the automata are similar, being Moore automata whose outputs coincide with their internal states. Usually, for the considered model examples, the complexity of automata and their transition functions do not depend on the number of automata in the array. An automaton's state transition is determined by a function that depends on the previous state of the automaton and the states of its two neighbors: 

Sk(t+l)=F{Sk-i{t),Sh(t),Sk+i(t)], k = (I, n -1).         (1)

Fig. 1. Synchronous 1D automata array.

The transition functions for the automata that are located on each end of the array are also determined by an external signal or the signal of the array border.

For the sake of being definite, let us consider the automaton to be built using a master-slave register. When 1' = I, its state is copied from the slave register (S) to the master register (M). When 1' = 0, a new state is formed in the slave register, as a function of the master register states ^, i.e.

Sk(t+\) - F{M,.-i(t),Mk(t),Mk+i(t)], Mk(t+l)=Sk(t). A--(I,n-1).                   (2)

Let us now discuss the problem of finding the middle of the array in the shortest possible time. For simplicity, consider an array with an odd number of automata so that there is only one automaton in the middle. Passing to the general case will not be too difficult.

GALA methodology.

^ Note however that the report declined at Asynch-94 was later accepted as a keynote address at the First International Conference on Massively Parallel Computing Systems [1] (May, 1994, Ischia, Italy).

" For matter registers, the time steps are marked by 1' = I, fur slave registers by T = (J. Actually, the next state can be formed in every phase of 7' changing, doubling the array performance.

If the search process is initiated in one of the end automata, one of the signals that propagate through the array with the speed of I unit (one automaton per cycle) must at least pass through the entire array and get back to the middle. Hence, when there are n = 2m + I automata, the minimum time to find the middle is t,,ii,i ^= 3m + 2 that determines the algorithm (fig. 2;a):

Fig. 2. Two ways of search for the middle of an array: by signals with different speeds of propagation (a); by shift of the reflecting boundary (b).

After one of the end automata is initiated, two signals start to propagate through the array: one with speed I (one. automaton per eyrie) and the other with speed 1/3 (one automaton per three cycles). The first signal is reflected from the opposite end of the array and goes back with the same speed. It is easy to see that the reflected signal will meet the signal that goes with speed 1/3 exactly in the. middle, of the array.
An example of the algorithm realization is given in Table 1. The automaton has 7 states. An empty cell in the table corresponds to a passive state. Table I directly produces the rules of changing the automaton states, for example: F(^, ,<-)=• or^( ,^, )-=»,etc.

We will not discuss in detail the automaton transition function. It should be obvious that such an automaton can be built and its synchronous implementation is not concerned with any difficulties.

Now let us turn to the asynchronous model in its classical version. While in the synchronous model the automaton changes its state after the clock signal has switched, in the asynchronous model the automaton state changes after the state (states) of its neighbor (neighbors) does. The signal (-)•) initiated by the end automaton propagates through the array with some speed. This speed is determined by the local physical parameters of the automata and, generally speaking is different for different points (automata) of the array. In this situation, using an algorithm based on comparing the speeds of signal propagation makes no sense. A natural question arises: "Can any wave propagation algorithm be implemented in an asynchronous array? And, if yes, then how?"

Table 1. Example of the algorithm realization
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First of all, note that we are interested in a general solution. This is why our example uses an algorithm based on comparing the speeds. Such algorithms are most difficult for asynchronous realization. The middle of the array can be found by a wave propagation algorithm that does not use the concept of signal propagation speed. The realization of such an algorithm is clear from fig.2,b.

The signal initiated at one of the ends is propagated with maximum (physical) speed and after reaching the opposite end is reflected, setting the end automaton into a reflecting state. Then, as the signal bounces between the automata that are already in the reflecting states, the working area of the array gradually shrinks until it contains only one (middle) automaton. Such a method provides an asynchronous solution to the problem. However, one of the aims is not met by this solution, which achieving the shortest possible time of the search. In this algorithm, the time grows quadratically with the number of automata in the array.

We are sure that this problem does have an asynchronous solution with minimum time. Of course, some bright student will manage to find such a solution. But where can we find a bright student fur every possible problem? The goal of this paper is tu present a method of translating between synchronous and asynchronous implementations, and we want to start with illustrating this method by the example of searching the middle of an automata array.

Table I represents sequences of the array automata states unfolded in logical time. The leftmost column contains the numbers of the logical time steps. In the structure of fig.I, we have the common time signal 1' for all of the array automata. Now let us designate the synchro-signal for automaton Ak as 'l'k.^ Then the transition function should be written as

Sk(Tk+~l)=n^k-i('n-i),Sk(Tk),Sw{Tk+i)], k = (I, n -1).    (3)

For the correct functioning of the algorithm, it is necessary and sufficient that during the change of Ak state the values of logical times 7^-1, 1'k, and '-1'k+i are equal.^ For the behavior of Ak, it does not matter what the values of 1'j are at the inputs of the automata that are not adjacent to Ak- Hence, in order to mimic the synchronous behavior, the "hard-wired synchro-signal delivery system" (fig. 1) should be replaced by an active asynchronous environment that will coordinate the local synchro-signals (fig.3). We will call such an environment "Synchro-Stratum" .

Fig. 3. Representing an automata array as a. composition of Synchro-Stratum and Automata Stratum

Fig.4 shows a fragment of an unfolding of the signal graph for Tj where Yj is an auxiliary variable that is needed for the signal graph to be correct [6]. The vertices of the graph designate rising and falling transitions of appropriate signals, arcs correspond to causal relations, and a vertex fires when all its input conditions are true.

As we have mentioned above, we consider a master-slave implementation of the automata. Hence, a change in Tj must initiate changes in the enabling signals for the master and slave registers. In the graph of fig.4, let us refine the signals ±Tj and ±Yj by the following sequences:

+'l'j = -EnSj -> +EnMj, 
-1'j = -EnMj -> +^nSj.,
In the synchronous model, 1): -= 7' for all k. 
^ Here Tj is the positive integer number (the number of  logical time step).

Fig. 4. A fragment of the signal graph unfolding around the local synchronization signal of the j-th automaton.

+Yj = -dj —^ +bj, -^ =--^^+03

where EnSj = I and EnMj — I enable writing the slave and master registers, respectively, and (ij and bj are auxiliary signals introduced for the implementability of the signal graph by a logic circuit [6]. From the refined graph, the implementation of a synchro-stratum can be derived as follows:

EnMj = EnSj + h.,_i • bj, EnSy =- EnMj + a^-i • (ij, ^j = hj + EnMj • EnMj+i. bj = (ij + EnSj • EnSj+i.        (4)

The system of logical equations (4) defines an autonomous 10 asynchronous synchro-stratum. To get an asynchronous implementation of the automata array, we should provide a handshake interface between the synchro-stratum and the automata stratum. Let Ac.kM, (AchSj) be the completion signal for writing the master (slave) register of the j-th automaton 11. Then substituting corresponding acknowledgment signals for their enable signals in (4) we derive:

EnMj — AckSj + bj-i • bj-, EnSj =- AckMj + aj_i • oj, aj =- bj + AckMj • Ac.kM j+i; bj =- (ij + AckSj • AckSj+i.       (5)

The respective circuit is shown in fig.5.

The obtained synchro-stratum together with the asynchronous (handshaked) implementation of the automata provides the solution of our problem in the following sense. After the synchro-stratum cell which generates the local synchro-signal for the middle automaton in the array switches 3m + 2 times (minimum time), this automaton goes to the marked state (•).

When the indexes change by modulo 7?. 

Here we are not interested how these signals are obtained.

Fig. 5. Fragment of the synchro-stratum circuit for the problem.

In conclusion, let us make one important note. Decomposition as such does not provide any new possibilities. The composition of the automaton and local synchro-stratum cell can have considerably simpler implementation than the decomposed solution. However, the suggested way of decomposition allows us to formally pass from a synchronous specification to its asynchronous implementation. The reverse composition opens up possibilities for using formal methods of minimization.

3 Distributed Timing Specifications and Synchro-Stratum Implementations
3.1 Strategies of Clocking
The main idea of synchronization by means of signals coming from a clock is associated, in one way or another, with organizing the master-slave behavior of circuit components. As a model for synchronization strategy, we will consider cellular arrays in which cells are finite Moore automata built as two-register master-slave circuits (see fig.6). At one value of the clock signal '-/', the automaton changes its current state by writing a. new state to the master register (the new state is a function of the previous state and the states of the automaton's neighbors in the array). On the opposite value of '-/', the newly adopted current state does not change, it is copied to the slave register. This is a two-phase functioning with dual-polarity control.^ Other synchronization methods can be reduced to the general scheme described above.

^ Block arrows labeled lii,i in ftg.6 are used as it will be shown later in other synchronization methods.

Fig. 6. Twu-register automaton structure with 2-phase synchronization: with dual-polarity control (a); with unipolar control (b).

To synchronize arrays, various synchro-systems are used, depending on the ways of signaling between the cells and the logic basis of cell implementation. The simplest case is single-track 2-phase synchronization with dual-polarity control  (fig.6,a). Let Ki.i (K•2,i) be the state of the first (second) register of the i-th automaton and let Si(t) = J^,•[.S',-l(/,-l).^(^-l),^-^l(^-l)] be the automaton state at time /-, which is determined by the transition function b'i. Then the synchro-behavior of the automaton can be represented as: 

if T = I, then R-i^ :=- ^(^,i-i,/^,t,^<!,i+i), 

if T -0, then ^ := R^i.
Note that a circuit for an automaton with two-phase synchro-signal control functions works in a stable way only when the variation in the delays of the wires of T is negligible, so that T changes its value at the inputs of both the registers at exactly the same time. To eliminate the influence of delays in wires, a 2-phase 2-track synchronization must be used with unipolar control over the registers using different signals and the discipline of synchro-signal change is ... -)• +7'i -f -l\ -^ +7'^ -> -T-i -> +71 -)• ... . In this case, the synchro-behavior of the automaton is defined as: 

if7'i = I, then R^i := /<,-(^.,_i,^,„^2,.+i), 

if7-J =- I, then R-^i := Ri,i.
Synchro-sequence T can be transformed into a couple of synchro-sequences 1\ and l'i with a. special circuit realizing the signal graph ... -^ +7'-> -1 \ -^ +'l'-i -> -T -f -l'-i ->• +'l'i -> ... , for example, as shown in fig.6,b. Hereafter, without loss of generality, we will assume that only one synchronizing sequence T arrives to every cellular automaton. At the same time, the automata in the cellular array can be synchronized by different synchro-sequences.

Depending on the interconnection structure between automata and accepted protocols of interaction, various multi-track systems of synchro-signals can be used for array synchronization. The timing diagram of the most common 2-track 2-phase synchronization system is shown in fig.7,a. There are also 3-track (fig.7,b) and 4-track (fig.7,c) schemes. The arrows show the directions and the moments of information exchange between the automata during synchronization.

Fig. 7. Timing diagrams for multi-track synchro-signals: 2-track (a); 3-track (b); 4-track (c).

Fig. 8. One-dimensional processor array: synchronous two-track two-pha»e implementation (a); asynchronous implementation with a separate synchro-stratum (b).

An example of 2-track 2-phase synchronization for a one-dimensional cellular array is given in fig.8,a. Signals T1 synchronize the odd automata; T2 synchronize the even ones. With the accepted two-phase discipline of automata functioning, they have the following synchro-behavior: 

if7'= I, then R^i := ^i{Ki,i-i,t{^.i.Ri^i),
if T = 0, then R-^i :=- R^i
and the output signal of every automaton is the state of its register R\. When this register changes its state, registers Ri of the two adjacent automata keep their states. In such an array, information flows can be transferred in both directions and processes can be initiated via the free ports of both end automata without causing unwanted collisions. In other words, any wave-propagation algorithm can be implemented, as the clock signals T1 and T2 provide correct interaction between adjacent automata.

An example of a one-dimensional cellular array implemented asynchronously with a separate synchro-stratum is given in fig.8,b. The interconnection structure synchro-stratum is isomorphic to that of the automata, array. Synchro-stratum elements have handshake interaction with their corresponding automata, forming local synchronization signals for them. For every automaton, the condition for firing the synchro-signal is the completion of transient processes in its neighbors in the connection graph. This is different from the synchronous prototype, where this condition is associated with the completion in all the automata initiated by the previous change in the value of the sinchro-signal.

3.2 Two-Track Master-Slave Synchronization of ID Arrays
Suppose that the processor array in fig.8,a consists of Mealy automata and the array is built to perform a certain algorithm. The algorithm is defined as a sequence of steps, i.e. in logical time. At every instant t in this time, all the processors of the array should execute the step number t of the algorithm. When the algorithm is being executed, the internal state Si{t) of every i-th processor and the states of its right Xi(t) and left Yi(t) outputs at time t are determined by its internal state at the previous moment; t - I, and by the information received at time t from its left and right neighbors. Thus, the behavior of the i-th processor is described by a system of automaton equations:

SiW=Fi{Xi_iW,Si(t-l),Yi^(t)],
Xi(t) = f^X^(t),Si(t - 1), WOL                   (6) 
Yi(t) = M^i-lW, Si(t - 1), Y^(t)].
We are now interested neither in the structure nor in the contents of this equation. The only important thing is that, if some algorithm is put into' the array, the equation system (6) is fully defined. Since we are interested only in time invariants of the behavior, then at the model level it is sufficient to consider the problem of synchronizing a. cellular automata array.

Synchronous implementation of the processor array requires further refinement of the synchronization system that controls the processors' operations. The structure in fig. 8, a assumes that the processors interact as master and slave. Two sequences of clock signals 1\ and l'i are used. To make it more definite, let the set of clock signals 1\ and 1^ change as follows:

{0,0} ^ {1,0} ^ {0,0} ^{0, 1} -> {0,0}^...            (7)

When 1\ = 0 (1^ =- 0), the odd (even) processors transmit information to their neighbors; when 1\ =- 1 (7^-1), the odd (even) processors receive information from their neighbors.

It is easy to see that with the adopted two-track synchronization discipline (7) automata interact in accordance with master-slave principle and there is no arbitration in a synchronous array. Arbitration is absent due to the following tact: at the moment when automaton l-\ receives data from its neighbors and changes its state, the neighbors do not react to the change of its output signals and do not change their own output signals. In fact, this is the only condition to be satisfied when designing an asynchronous synchronizer (synchro-stratum). Note that in the synchronization structure mentioned above, every step k in logical time consists of two consecutive steps in physical time. This kind of structuring of logical time may lead to a change in system (6) that describes the behavior of every automaton.

Fig.9 presents the signal graph of parallel two-track two-phase synchronization in physical time for an 8-automaton one-dimensional array with the synchronization discipline (7). In this graph, signals ±T1 and ±T2 represent the transitions of clock signals T1 and T2 events +Ai and -Ai have the meaning of transition processes of limited duration in automata Pi. Synchronization at the graph nodes is provided by extra time (nodes -Ti, +T2 wait transient process completion signals from all odd automata and –T2,+T1 from all even automata). The graph shows that, at step k of the so structured logical time) the behavior of the even automata is described by a.n equation system that is similar to (6):

Si(k) =Fi{Xi-i(k),Si(k-l),Yi+i(k)], Xi(k) = f^i-^k),Si(k - 1), Yi+i(k)],                 (8) Yi(k) - fi,{Xi_i(k),Si(k- l),^i(fc)].

Fig. 9. Signal graph of parallel two-track two-phase synchronization of an 8-automata one-dimensional array.

For the odd automata, the equations look as follows:

Si(k) = Fi{Xi_^k - l),Si(k - 1), Y^(k - 1)], 

X,(k) - f,.A^.-i(k - 1),.^ - l),Yi+i(k - 1)],             (9) 

Yi{k) - fi,{X^{k - 1),^ - 1), Y^(k - 1)].

The transition from system (6) to system (8) and (9) is purely formal and can be performed for any system (G).

3.3 Globally Distributed Synchronization
Let us now consider the problem of designing a distributed synchronizer for arrays of matched asynchronous automata.

In an asynchronous array, the durations of phase transitions (transition processes) in the automata are undefined in physical time. Hence, their interaction with the synchro-stratum should be organized as a handshake. It does not matter what principles form the basis of the automaton implementation   self-timing, start-stop local clock, incorporated delays, etc. Only the matching is important, i.e. the presence of signals Ai that acknowledge the completion of transition processes in response to the clock signal.

In [1], we suggested a solution to this problem, which introduced a system of logical time synchronization waves (or synchro-waves for short) that propagate through the synchro-stratum, always in one direction only. Fig. 10 presents a fragment of the signal graph unfolding for such a structure (see fig.8,b). In this graph, ±'l'ij(k) denotes an event that consists in the k-th transition of the clock signal 1'i, i ^ {1,2} (logical time step k) that comes to the J-th automaton of the array. The equation system (6) becomes as follows:

Si(k) = Fi{Xi_i{k),S,(k - 1), Yi+^k - 1)], 

X^k) = fi^^(k),Si(k - 1), Y^k - 1)],              (10) 

Yi(k) =- f^Xi_,(k),Si(k - 1), Yi+i(k -1)].
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Fig. 10. A fragment of the unfolding of the signal graph describing wave logical synchronization of a one-dimensional array.

Incidentally, it is easy to see from the graph in fig. 10 that the same logical time in the array exists in different automata at different physical times, and at the same physical time there are different logical times.

Fig. 10 depicts only general relationship between the signals; it is an initial specification for synchro-stratum design. The implementation requires extra variables and extra design. One of the possible solutions [1] is as follows.

Let oj be an event that corresponds to a full cycle of the J-th automaton, i.e. (ij = +'-i'ij ->• +Aj -)• -'-l'ij ->• -A.j. Then, proceeding from the graph in fig.10, the necessary event coordination is described by a labeled Petri net (see fig.11). It is easy to see that this is a specification of a simple pipeline. A direct translation of the specification to the implementation using simple distributor cells [7-9] provides a sufficiently simple synchro-stratum circuit shown in fig. 12. This translation is possible because, unlike the situation in a C-element pipeline, in a distributor cell pipeline the output signal of every J-th cell makes the full cycle on dj and after that the next, (J + l)-th cell begins to change its output signal. However, this solution has a drawback, low speed, since the pipeline of fig.12 attains its maximum speed when filled at 1/3 and adding buffer distributor cells to the synchro-stratum to increase the speed is fraught with incorrect interaction of the automata.

Fig. 11. Labeled Petri net describing pipeline interaction of the automata in a one-dimensional array

Fig. 12. Synchro-stratum on distributor cells

The signal graph unfolding shown in fig. 10 allows one to derive a Petri net of another kind, which is presented in fig.13. From this net, again with the help of direct translation [7,8], a synchro-stratum can be built which uses three distributor cells per two automata (correct operation of a circuit based on distributors requires that every cycle has no less than three cells) 13.

Fig. 13. Another variant of the specification of one-dimensional array automata interaction.

The described solutions are based on the standard pipeline methodology organizing a pipelined distribution of logical time synchro-waves. This methodology prevails at the architecture level in modern self-timed and asynchronous system design. It was this stereotype of thinking that prompted us to look in this direction and resulted in the solution presented in [1]. Let us now try to overcome it and look at the problem of array synchronization without referring to any pipeline structures.

Fig. 14 shows a fragment of a signal graph unfolding that defines parallel, rather than wave-based, synchronization. Unlike fig.10, all the parallel clock signals (clock signals of the same unfolding tier) correspond to the same, rather than consecutive, moments in logical time. Note that for a sufficiently large array (i.e. sufficiently wide signal graph) different logical time can exist at the same moment of physical time. Note also that in the case of parallel synchronization the algorithm is represented by equations (8) and (9).

To synthesize a circuit of the synchro-stratum, one should derive a correct signal graph adding extra variables that resolve the state coding conflicts in the initial specification. It appears that there is a surprisingly simple solution presented in fig.15. In this graph, signals ±Xi and ±Yi are the additional ones. The refined signal graph leads to an amazingly simple circuit presented in fig.16.

Even a passing glance at fig. 10 and fig.14 is enough to come to a conclusion which seems trivial, but which was completely unexpected to us: The graphs differ only in the logical time labeling. Hence, for the same synchro-stratum circuit, depending on the. agreement on logical time labeling (i.e.. which equations define the algorithm), we. obtain either a parallel or a wave system of global synchronization.
13  The circuit from two distributor cells connected in cycle has a deadlock [8].

Fig. 14. Signal graph unfolding fragment describing parallel synchronization of a ID array.

Now let us consider a synchro-stratum for a system of automata placed at the vertices of an arbitrary graph, the arcs of which correspond to the connections between the automata. With the accepted synchronization discipline, i.e. two synchronization systems 1\j and 'l'ij, the connection graph should be a Konig graph (i.e. bipartite) [10].

The reduction of an arbitrary interconnection graph to a Konig graph is trivial; for example, it can be done by inserting buffer registers into all interconnections. Note that this should not affect the overall synchronization strategy since, as mentioned above, the synchronization strategy itself is invariant to the semantics of the synchronized automaton behavior. The insertion of buffer registers may be useful irrespective of the type of graph interconnection, especially if the cycle of the processor operation is significantly longer than the write cycle of the buffer registers. In such a case signals 1\j =- I initiate the activity of the processors and signals l'ij - I initiate the write cycle of the buffer registers. A more sophisticated internal organization of the processors can be used to achieve greater concurrency. However, these problems are to do with the strategy of forming the acknowledgment signals and the methods of internal processor synchronization, and so are beyond the scope of this paper. We would like to repeat that the approach we have chosen, i.e. decomposing; a system into the processor and synchronization strata, allows us to separate out the problem of global synchronization and that of processor behavior.

Fig. 15. Correct signal graph fur parallel synchronization of a ID array.

Fig. 16.   Synchro-stratum   for   parallel   synchronization   of  an   8-automata one-dimensional array.

Let us return to fig. 16. What local properties of the circuit guarantee the correctness of the synchro-stratum behavior?

Firstly, in the layer of gates, the outputs of which are signals 1\j and T^j, the connections between neighboring gates (through automata Aj) cause the transition of the output of a gate from state 0 to state I iff the outputs of all the neighbor gates are equal to 0.

Secondly, the transition of a gate with output 'l'i) from state 0 to state I should be deterministic. Therefore, memory is needed to hold information about the previous state; this is performed by two layers of gates with outputs Xj and Yj. For these outputs to appear no sooner than the neighbor lateral gates have switched to 0, gates Xj and Yj are connected similarly to those between gates ij '

Similar requirements on local interaction, augmented with the interaction with all the neighbors in the graph, allow one to build a cell of the synchro-stratum for an arbitrary Konig graph (fig.17). Depending on the degree of graph vertices, the required number of inputs per gate may exceed the gate fanin bounds. Of course, in this case the cell circuit will have to change somewhat, but that can be done by standard methods of self-timed design, for example, using intermediate C-elements.

Fig. 17. A cell to built a synchro-stratum for an arbitrary Konig interconnection graph.

3.4 More Precise Definition of Global Synchronization

Until now, we have assumed that the concept of global synchronization is intuitive. Now we shall try to define it more clearly. As an initial specification, we have a synchronous implementation with a two-track two-phase master-slave synchronization system which consists of two clock signal sequences 1\ and T^ with a discipline defined by (7). Such a synchronization system breaks down the set of the processors into two subsets: processors {-4^} clocked by '-/'i and {Bi} clocked by l'i. For a synchronous implementation, the unfolding of a signal graph similar to the one displayed in fig. 9 is as follows:

+Ti(k) -^ {+ai(k)} ^ -Ti(k) -^ {-ai(k)} ^ +T^k) -^ {+bj(k)} ^

-T^k) ^ {-bj(k)} ^ +Ti(k + 1) ^ .{+0^ + 1)} -^-1\{k +1)^ {-a^ + 1)} ^ +7^ +1)^....               (II)

Signals ±ai(k) and ±bJ(^) designate the completion of transition processes in physical time in the corresponding processors.

The algorithm of system behavior is defined by automaton equations (8), (9) or by equations (10), which establish the cause-and-effect relationship between the events that take place in the processor automaton and the events in its nearest neighbors in the interconnection graph in logical time (i.e., partial order of events).

 Let us denote the request signals for processors Ai and Bj as '-t'u and 7^, respectively; the request signals for the subset of processors Uj that are the nearest neighbors of processor Ai in the interconnection graph as {7^[74.i]}; the request signals for the subset of processors Ai that are the nearest neighbors of processor Uj as {7'ii[^j]} . Also, let (a and bj be the acknowledgment signals of processors .4; and Uj respectively. We say that the signal graph of synchro-stratum behavior specifies the global parallel synchronization of an asynchronous system that corresponds to the synchronous prototype if the following two conditions are satisfied: (i) the. signal graph of the synchronous prototype is homo-morphic to the signal graph of the. synchro-stratum with respect to the mapping {±'-l\j(k)} ->• ±7<(fc),/ fc {1,2}, and (ii) the signal graph of the synchro-stratum conforms to the relation of precedence between the events in every processor and its closest neighbors as defined by automata systems (8) and (9):
+TiiW ^ +ai(k) ^ -J\i(k) -> -a^k) -> {+^[^](fc)}, +^•(A•) -^ +bj(k) ^ -T^k) ^ -bj{k) -^ {+T,i{Bj](k+ 1)}.    (12)

For the wave synchronization defined by system (10), the direction of synchro-wa.ve propagation should be given for every point in the synchro-stratum, lo do this, for every processor (.4, and Bj), the set of its nearest neighbors in the interconnection graph should be broken down into two subsets the sources of the synchro-wave front (Usj(Ai) and Asi(Bj)) and its receivers (Brj(Ai) and An (Bj)). Besides, some vertex in the synchro-stratum should be appointed as a rhythm driver. All the nearest neighbors of this vertex in the interconnection graph are receivers of the synchro-wave front^. Such a partitioning brings us to a four-color graph. Partitioning can be performed in various ways depending on which rhythm driver point has been chosen. In homogeneous arrays, it can be done rather easily, whereas an arbitrary interconnection graph requires collision detection and the partitioning may be rather sophisticated. Fig. 18 presents examples of organizing synchro-wave propagation, one is a two-dimensional array (fig. 18, a) and the other is a heterogeneous interconnection graph (fig. 18,b). In any case, the synchro-stratum should provide the following order of the events:

+'l'u(k) ^ -o,(fc) ^ -'l\i(k) -^ -ai(k) -> {+T.,j{An](k)}, +T-2j(k) -^ +bj(k) -> -T^(k) -» -bj(k) -> {+'l\i{Urj](k + 1)}.    (13)

and for the rhythm driver: +'l\i{k) -> +o,;(fc) ^ -l\i{k) -> -a^k) -> +7H(/c + 1).

14 Any cycle in the graph can be used as a source of synchro-waves.

Fig. 18. Examples of organizing the propagation of isynchro-waves: a) in a two-dimensional array, b) in a heterogeneous graph.

The choice between wave and parallel synchronization strongly depends on the problem being solved, although parallel synchronization is generally preferred.

3.5 Synchro-Stratum Specifications and Implementations
For the case of 2-track 2-phase synchronization of a one-dimensional array (fig.8,a), we managed to find a sufficiently simple synchro-stratum implementation. Its behavior is specified in fig.19,a. The line above the graph indicates the correspondence of local synchro-stratum signals to prototype synchronization signals ti and T^. In the graph itself, signals ±'l'j stand for the changes of the output synchro-stratum signal which initiates the functioning of J-th automaton. Signals ±Pj stand for the changes ofJ-th automaton acknowledgment signal; signals ±hj correspond to the changes of local intermediate variable h., of the synchro-stratum. Deriving a synchro-stratum module from this signal graph gives the following gate equations:

T_j =- Tj_i + h,+Tj+i, hj=-hj-i+FjC^+1) -i^+i) +hj+i.    (14)
One can trace from the graph of fig.l9,a that the synchro-stratum adds a delay of D^« = Gryau- (Tyuu- is the delay of one gate) to the automata delay. The CMOS implementation has 18 transistors; each module is connected by four wires with adjacent modules.

Fig. 19. Signal graphs for 2-track 2-phase synchronization of the array from 8 automata: first version (a), second version (b).

The size and quality of a synchro-stratum strongly depends on the way of introducing internal variables. In fig. 19,b, the second version of the signal graph is shown with the same number of internal variables. From this graph it is easy to derive the equations for synchro-stratum module gates:

1) =- Tj_i + hj-ihj+i + T.,+i, hj =- hj-i + Pj + hj+i
In CMOS implementation, these gates require 4 transistors less than the gates (14). Both graphs of fig. 19 is allow concurrency between even and odd automata in their opposite phases of operation that considerably increases the performance of the processor stratum.

Fig.20 shows a fragment of the signal graph unfolding that describes the synchro-stratum built for the case of 4-track 2-phase synchronization in a one-dimensional array. This signal graph specifies the behavior of a well-known circuit winch is a one-dimensional pipeline [8]. The line above the graph points to a correspondence between synchro-stratum output signals Tj that activate the automata and the prototype synchro-signals 1\ 1\. Signals ±'l'j (k) mean the changes of 1'j at the moments k of logical time. The ^ symbol marks the connections into which the automata Aj are inserted with their handshake signals. The bold arrows coming to vertices +'-1 'j (k) determine the state change condition for the J-th automaton (the state of register Hi), the dotted arrows to vertices -l'j{k) determine the condition for this state to be held in the J-th automaton (by changing the state of register R'i). It is easy tu see that the synchro-stratum is implemented by simple C-elements: 1'j = 1'j-il-"j^-\ + 'J'j('-l'j-i + ^j+i) where Pj+i is the acknowledgment signal of the (j + l)-th automaton.

Fig. 20. Signal graphs unfolding for 4-track synchronization

The structure of a one-dimensional array with such a synchro-stratum is shown in fig. 21. In this circuit, the total extra delay added by the synchro-stratum is L)^, =- 4^- =- ^Tyau-. where t^ is a C-element delay. The complexity of a synchro-stratum module is determined by the size of the C-element implementation (8 12 transistor for CMOS); the number of wires connecting it with other modules is 2.

Fig. 21. One-dimensional asynchronous array for the synchronous prototype with 4-track 2-phase synchronization.

The last synchro-stratum circuit differs from the others described here and in [1 4] by its interaction asymmetry and the way how automata are inserted into it.15 The interaction asymmetry determines the directions of the propagation of synchronization signals and the synchro-stratum is a pipeline, whereas the synchro-strata discussed earlier are oscillating structures. This difference becomes noticeable if the inter-automata connection graph degree is more than 2.

Fig.22 demonstrates two possible structures of synchro-wave propagation in a 2D-array: for synchro-waves with a line-front (fig.22,a) and for those propagating from a. single-point rhythm driver (fig.22,b).

Fig. 22. 2D-arrays: with line-front synchro-wa.ve (a); with rhythm driver (b).

From the graph of fig.22,a, directly follows the automaton equation for the array element forming the signal 1'^:

'^'i,3 ~ 'i'i-l,j'^i,j-\'l'i+l,j'^i,j+l +^'i,j^'i-l,j +^'i,j-i +^'i+_U +'-l'i,j+l)_ 

This is an equation of a four-input C-element. If we replace '-l'i+i,j ^ud '-t'i,j+i respectively by ^'i+i,j wd l~'i,j-}-\•, which is equivalent to inserting -41+1^ and Ai,j+i into the synchro-stratum circuit by their handshake signals, we will obtain the equation of a. synchro-stratum module.

For the single-point rhythm driver wave-propagation structure (fig.22,b), it is also easy to build a synchro-stratum using 4-input C-elements. When deriving C-element equations which determine the inter-element connections, one should use the following rule: the equation contains a, variable without inversion if the corresponding arrow in the graph is incoming, and with inversion if it is outgoing. For example, all the variables in the equation of a C-element which acts as a rhythm driver must be inverted.

Let us return to the graph shown in fig.20. For signals ±'J'j(k), logical time moments k are shown which change in accordance with the synchro-wave order. Each synchro-wave is marked with the same logical time moment. In a usual synchronous specification of a cellular ID-array, automaton equations for cells are in the form Sj(k+\) == Fj{Sj-i (A;), ^(fc), ^+1 (A;)] independent of the way how synchronization is done. The introduction of a synchro-signal system requires concretizing the procedures of state change and inter-automata data exchange. In the signal graph we are discussing, signal +1) (k) initiates forming a new state Sj(k) in the master register while the slave register keeps the state of the previous time moment Sj(k — 1). At event —1'j(k) the new state is written to the slave register and the state Sj(k) is allowed to be read from the master register. Hence, the initial synchronous specification can be correctly reproduced in asynchronous logical time.

15 Aj is inserted into wire gap Tj after the fork; nevertheless, the circuit stays delay-insensitive to wire delays.

In section 3.3 we demonstrated how to transform wave synchronization into parallel synchronization by a simple change of the initial marking of logical time moments in their signal graphs. However, this requires changing the form of cellular automata equations. A fragment of the synchro-stratum signal graph unfolding for a synchronous prototype defined as a ID-array with 4-track 2-phase parallel synchronization is given in fig.23.

Fig. 23. Signal graph unfolding for 4-track parallel synchronization.

The nodes of this graph in which logical time moments change cause state transitions in the automata (state change of the registers R1). Thus the graph defines the following rules of cellular automata, state transition and data exchange:


for automata- Aj_^^\, i -0, 1,2, 3,... 


·
if 1'j =- 0, then Ri^ :- ^(K-^j-l, k^.j, ^^+1), if 1) =- I, then R-^j -.- R^j,

for automata Aj_4i+^, i - 0,1,2,3,... 


·
if Tj =- I, then R^j :- Fj(H^j_^H•^_,, ^2^+1); if 1'j = 0, then K'^j := Hi^,
- for automata Aj_^-j, i = 0, 1,2,3, ...

if Tj == I, then R^j :== ^(^^-1,^2,^^2,^+1); ^'-l'j - 0, then K^j := ^ij; 


for automata Aj_4i+4, i = 0,1,2,3,... 


·
if 1'j = 0, then R\,j '.= Fj(K•^j-l,R^,j, ^^+i); \iTj = I, then ^^ :== ^i^;

4 GALA Application Examples
4.1 Modulo-k Counter with Constant Response Time
Modular-k counters are often used for cyclic process control. To increase control efficiency, in such counters one has to minimize the latency between changing the input counting signal and getting the completion signal. This can be done using carry-look-ahead circuits which add their own extra delay to the counting cycle or using asynchronous counters with constant response time [5], whose complexity is pretty high. Several years ago, we suggested synchronous counters with delayed carry propagation [11]. These counters have insignificant logic overhead and for every input transition have the latency not exceeding the switching time of one simple flip-flop. Let us consider one of these counters shown in fig.24.

Fig. 24. Three-stage counter circuit.

The zeroth bit of the counter is a usual toggle with dual-polarity control. The remaining bits are built as master-slave toggles with unipolar control: the odd digits fire when 1' = 1; even digits have dual implementation and fire when 1' = 0. The sequence of master flip-flops states differs from the sequence of binary numbers.

Every counter digit can be in one of the four states for which we will introduce the following designations: 0,1  the states of master and slave latches are different, 0", I*   the states of master and slave latches are the same. For example, the sequence of a 5-bit counter states is shown in fig.25.

Fig. 25. State sequence of 5-bit counter.

When the clock signal T changes its value from 0 to 1, the zeroth bit turns into state {0,1}; when T switches from 1 to 0, it turns into states {0*, I*}. Every next bit, with the corresponding value of 7', turns into states {0*, I*} if the preceding bit is in state 0* or 1 and into states {0,1} if the preceding bit is in state 1* or 0. In time moments 1' - 0, the counter produces the following sequence of numbers: 10, 15, 12, 13, 6, 3, 0, 1, 2, 7, 4, 5, 14, II, 8, 9, 26, 31, 28, 29, ... . However, note that the counting cycle in an n-bit counter is equal to 2n.

It is easy to see that, as compared to a usual binary counter, the value sequences of the suggested counter bits have constant phase shifts starting from Q2. If we measure the phase shifts by the number of T changes, the phase shift of the j-th bit depends on the phase shift of the preceding bit, as pj - ipj_i+ y ^-1 for j ^ 2. For the initial condition ^i =- 0, the solution of this equation is ^ =-'V- J-l. According to this solution, the sequence of phase shifts, starting from the zero digit, is: 0, 0, 1, 4, 11, 26, 57, ... . A simple expression for a phase shift allows one to transform binary numbers into the states of counter bits. This can be done, for example, using the following procedure.

In the state sequence given above, the odd combinations are marked with ordinal numbers which are decimal equivalents of binary numbers. For every j-th bit, number Kj is calculated using the formula:

(2YV + 1) - ^_i + ^ -]    '
•y(2YV + 1) - ^_i + ^ -]    '
•y(2YV + 1) - ^_i + ^ -]    '





(16)
where n is the number of bits in the counter, 
N is the decimal equivalent of the binary number, 0 ^ A' ^2"-I, 
{a~\ means that a is rounded off to the nearest larger integer, 
(a)mod 4 is the remainder of dividing a by 4.
Rj can take the values from the set {0,1,2,3,-1 ,-2,-3}. The state Qj of the j-th digit is defined in accordance with the following rules: if Uj = 0, then Qj = 0; if Rj = 1,-3, then Qj = 0*; if Rj = 2, -2, then Q, - 1; if Ky = 3, -I, then ^ - i'-
Note that the counter state that corresponds to the zero binary combination changes in accordance with the counter length and can be easily calculated using the procedure described above. This state is the overflow signal for modulo-2n counting. For example, in a 5-bit counter the zero value of the binary code corresponds to the state 01*0* 10*.
To organize counting with modulo K ^ 2", one can use the following technique: every time the overflow signal arrives, at the first counting signal of the next cycle, we can assign the initial state of the counter equal to 2"- K +1.
Sometimes, it is more convenient to form the overflow signal not by the counter internal state but using an extra (n + l)-th bit. Doing so, the zero state would certainly change. The overflow signal would be produced when the most significant bit becomes equal to 1. After this, the first counting signal should reset this bit back to 0.

A serious shortcoming of such a counter is its high capacitive load on the counting signal, as the counter is built using 1-track synchronization. It is easy to build a similar counter with 4-track 2-phase synchronization if to assume that every counting signal is in phase with synchro-signal T1. Since such a counter is a li)-array, we can .obtain its asynchronous implementation with a synchro-stratum built on two-input C-elements (see fig.20), using the way described above.

The structure of an asynchronous modulo-K counter with constant response time for the case of an odd number of bits is given in fig.26. If the number of bits is even, the two AND gates with outputs NOF and OF should be replaced by OR gates. The synchro-stra.tum in this structure consists of two C-element rows that form a pipeline register. The output signals 1'j of the first row control the counter bits functioning in the counting mode while the output signals Sj, of the second row control setting the initial state.

Fig. 26. Asynchronous structure of modulo-K counter with constant response time.

Every counter bit has four set inputs that correspond to states 0, 0*, I and I". One of these inputs should be in the active state, others   in passive. The set input can only assume its active value when Sj is in the active state.

The acknowledgment signals Pj are produced with NOR-gates. This is admissible due to the following reason. When the synchro-stratum is functioning, the duration of the cycle of signal 1'j (Sj) is not less than 10tgate, i.e. 1'j (Sj) keeps its value for, at least, 5tgate. This time must be enough for one simple flip-flop in the J-th bit of the counter to fire since its switching time is not more than 2tgate. Thus, 2.5-fold time margin is provided. When necessary, the delays of the NOR-gates can be increased, for example, this is necessary when producing signals NOF (no overflow) and OF (overflow).

When the counting modulo is K, to 2K changes of signal T the counter replies by 2(K - 1) changes of  NOF and 2 changes of OF.

The number of synchro-stratum C-elements in the asynchronous counter implementation can be reduced almost twice using the following approach. Let the synchro-stratum consist of \ii/2~\ elements and let the output signals 1 'j and Sj synchronize the array automata. Every automaton A,, except for the last one, contains two (j-th and (n - j - l)-th) bits of the counter. The last automaton A\.n/-i\ contains two bits if n is even and one bit if it is odd. We could prove that such a "curved" counter also functions correctly but the proof is beyond this discussion.

4.2 One-Two-One Track Asynchronous FIFO
Here we apply our GALA approach to constructing the logical circuit of a very fast asynchronous FIFO buffer. This FIFO is a register pipeline with control logic providing maximum throughput. It can be used, for example, in the Line Interface Module (LIMO) that implements the direct ATM-over-fiber transport mechanism [12]. The initial specification for the FIFO design is taken from this work.

Data Rate and Input/Output Protocol. The input data arrive in 8-byte (64 bit) words with a frequency of 300MHz, accompanied by signal A. This signal acts as an external synchro-signal, so data change at its every edge (fig.27). The mode of data change is NRTZ (non-return to zero); the frequency of A change is 150 MHz (the period is 6.6 ns).

Fig. 27. The time diagram.

When the receiving device is a usual FIFO, we should form two changes of Enable signal at every edge of A16 within 3.3 ns, accept the coming word into the input register and rewrite it into the next FIFO register 17, making the input register ready for the next word. Below, we will discuss the possibility of attaining the maximum performance. When the word is 64 bits wide, the main delay in writing is associated with charging the capacitances and propagating the signal via the Enable wire. The number of changes of Enable in the receiving cycle can be reduced using a different FIFO architecture.

16 This is usually done by the inverse of an asynchronous toggle element. 

17 Two more changes of Enable signal.

Let us introduce two receiving registers Rl and R2. On the positive edge of A, the data is written into Rl, on its negative edge - into R2. Writing into R1 (by Enable signal E1) occurs at the same time with reading from R2, the same is true for writing into R2 (by Enable signal E2) and reading from Rl (fig.27). Thereby we introduce the structure of a One-Two-One Track FIFO. The output head should provide for alternate reading of data from the tracks, forming the Request signal R.
Basic Circuits. FIFO behavior largely depends on the type of register latches being used and on the way of forming the Enable signal. In recent years, latches with weak transistors became popular (e.g. Svensson's latch [12,13]. This is concerned with the possibility of reducing the capacity load on Enable signal (two transistors) and single wire data inputs. On several grounds that will be clear below, we will use the latch given in fig.28,a. For gathering data from two tracks into one we also need a multiplexer, which can be built as shown in fig.28,b.

Fig. 28. The latch (a.) and the multiplexor (b).

Although these circuits require both Enable signal and its inversion, this can be efficiently used when organizing a driver for the Enable signal. The switching time of Enable signal is determined by two factors. First, by the behavior of the Enable wire as a line with distributed RC-parameters. The delay of signal propagation through the line is Tu,n. = RCI^/2 where R and C are distributed parameters per a unit of length and l is the length of the line. The delay is reduced by line segmentation and incorporating intermediate inverters. Second, the delay reduction is restricted by the permissible density of current in the wire18.

18The density in aluminum is IU°'A/c.m =- \mA/f.r for direct current and '2~3mA^r for alternating current.

To charge the total capacity C up to voltage V by permissible wire I a certain time th^ = CV/I is necessary. In this case, the delay can be reduced by increasing the wire width 19 and/or by wire segmentation. Since in any case a powerful driver (chain of inverters) is necessary for Enable wire switching,, a segmentation like the one in fig.29 obviously makes sense.

Fig. 29. Enable wire driving.

Furthermore, there is one more reason for segmentation. Actually, an asynchronous FIFO requires that the moments of register writing completion are indicated; this inserts a significant extra, delay. However, the time required to switch Enable is considerably longer than the time of switching the latches. Segmenting the Enable wire provides that Enable signals always arrive in the latches in an orderly fashion and strengthens the possibility of using the switching delay of Enable as a parallel embedded delay for the registers.

Strategy of Synchronization and Synchro-Stratum Design. The synchronous prototype for FIFO is a synchronous shift register, with A signal used as a synchro-signal. However, the capacitive load on it becomes too big. Asynchronous shift is more preferable, and not only for this reason. As follows from section 3, the synchro-stratum structure depends on the chosen way of synchronization. Here we will discuss the two-track shift register with 6-phase synchronization (fig.30). Each track is a register with 3-phase synchronization. The even synchro-signals control the shift of data in one register) and the odd synchro-signals in the other register. In fig.30, arrows show the conditions of forming signal edges in asynchronous implementation. Dotted arrows point out the direction of data movement in both tracks.

From the timing diagrams in fig.27 and fig.30, taking into account the output sequencing, we can construct a signal graph model for the entire device (fig. 31). 20 It is important that we have no handshakes here, neither at the input nor at the output channel. As for the input, we should start from the hypothesis that between two adjacent changes of .4 the transient processes in the input circuits must be completed. 21 The arcs shown in the signal graph as dotted lines are given just to provide the correctness of the diagram in the procedure of formal synthesis of control circuits.

19 The wire capacity will increase at the same time. 

20 Fig.31 shows the specification of a 8-word FIFO. In this graph signals Di correspond to signals Tj in Fig. 30 (j =. i„wd&) and signals Ei are acknowledgment signals to Di. 
21 A reader may ask: why don't we extend this hypothesis to all FIFO registers? The answer is that a FIFO does not only transfer data; it also averages the delay of propagating the data from input to output when the duration of data processing is data-dependent.

Fig. 30. Six-phase synchronization of a two-track shift register.

Fig. 31. Signal graph.

Using the specification in fig-31, logical equations are derived for the elements of the device:

L)j - L)j^ - E^ V^+i-(^_iV^+,), 3<J < YV - 1;
dn-v = U^-2-BV on -(un-^ B), ^-^-i-^V^-(^_iV^); _ ^•=D„J-2,3,...,A'; ^=^; Hu-U.
The corresponding circuit is given in fig.32. In this circuit the output signal Ra (next word request) of the input head can be used for checking the correctness of data reception. "Delay" is incorporated in the output head in order to restrict the speed of the output data. Alternatively, the environment can be used instead of the explicit delay if the interface between the FIFO and the environment is supported by handshake signals. The circuit which controls data moves in the FIFO is similar to the circuit of an asynchronous distributor patented in [14].

Discussing the Results. The circuit in fig.32 is a principal solution that, generally speaking, can be improved by physical design. However, it is enough for the aim pursued here, i.e. for the demonstration of an example of building synchro-stratum by means of global synchronization of the FIFO registers.

As one can see from fig.31, the delay of the full cycle of signal -4 is equal to fiTyau- + 4-7/i,u. were tu,^ is the delay of the enable signal Ej of the register Hj. The cyclic delay of the FIFO is Gryat,- + 'iTi.iiw- Hence, the bottleneck of the FIFO throughput is the input head. Note that the suggested FIFO has a latency close to the absolute minimum for register FIFOs: in an empty FIFO, switching of B signal starts (A' + \)Tyau- +t^,«- after A has changed where N is a number of FIFO registers.

Generally speaking, data can move independently through parallel tracks of the FIFO. However, it doubles the number of control gates. The possibility of using independent tracks depends on the way the adjacent words in the packet interact with each other while the data is being processed.

4.3 Arbiter-Free Control Logic for Counterflow Pipeline Processor
Regardless of its possible practical application, the counterflow pipeline processor architecture of [15 18] is a very interesting object for studying the behavior of asynchronous devices and their design. In all publications about the counterflow architecture we know of, the behavior specification contains arbitration situations and the respective implementations include arbiters (mutual exclusion elements). However, for today, fully asynchronous computing systems are largely unknown. The only way to apply asynchrony is via its evolutionary penetration into a synchronous environment. However, in this case, the arbiters of asynchronous devices would start to work as synchronizers whose operation is unreliable. A simple calculation of the failure probability shows that asynchronous devices with arbiters are often not applicable in synchronous environment.

One of the main sources of arbitration conditions in the counterflow architecture is the need to provide for the meeting of every instruction with every data set. Here we will try to demonstrate that using the GALA methodology based un decomposing the device into a. isynchro-stratum and a processor stratum allows us to build arbitration-free implementations for the counterflow architecture. Our claim is based on the fact that for the processor stratum we can use a synchronous prototype in which we can naturally avoid arbitration. The synchronous prototype should be supplemented by logic that provides the handshake interaction with the synchro-stratum.

Fig. 32. One-two-one track FIFO.
Synchronous Prototype of the Counterflow Pipeline Processor. As an initial specification in the GALA methodology we will use the synchronous prototype, description shown in fig.33. The structure consists of two register arrays (pipelines) to ensure the instruction flow and data flow move in two opposite directions (from top to bottom and from bottom to top, respectively). Every instruction from the instruction flow must be executed when meeting the respective data set. For this purpose, every pair of registers lj and Uj (instructions and data) is provided with a local processor l-'j that processes the data according to the current instruction.

Fig. 33. Synchronous prototype of a counterflow pipeline processor.

Let us consider the simplest type of synchronization that is double-track. It uses two synchro-sequences 1\ and 1^ which change as ... -)• +'-/'i -f -l\ -> +7'^ -^-> --'i'-i -> +71 -> ... . When 1\ =- I, the instructions are passed from registers I-a to registers ^i+i, the data sets are passed from registers L)^ to registers O-a-i- and processors P'a+i execute the respective instructions over the respective data. When 1^ =- I, the instructions are passed from registers l'ii-\ to registers l'a, the data sets are passed from registers D'a+i to registers D^i, and processors P-a execute the respective instructions over the respective data. Actually, more sophisticated interconnection schemes and synchronization modes could be suggested, for example those that support concurrency between processor operation and data/instruction movement. However, this would just complicate the statement, without changing the principles of the solution we suggest here.

Using a Shift Register as the Prototype of an Asynchronous Pipeline. The next question we have to discuss is organizing the interaction in the register files. The simplest synchronous prototype of an asynchronous pipeline when using a synchro-stratum is a shift register. The structure using shift registers is shown in fig.33. To store and shift n bits of information (n fc-bit words) we should have at least 2n memory cells (2n k-bit registers). So, a shift register is a prototype of a non-dense pipeline [8]. Let us mark 'the instructions and data in the respective flows as even and odd. The marked instructions and data will be referred to as el, ol, eD, oD. Now let us consider an example of two counterflow registers changing their states. Let the registers be in the state determined by the left column of instructions/data pairs in fig.34. When 1\ = I, the registers pass to the state that corresponds to the middle column. When T^ •== I, their state corresponds to the right column. The arrows show the actively clocked positions in the shift registers.

Fig. 34. Example of shifting instructions and data in counterflow registers.

We can see from fig.34 that up to the accuracy of enumeration the odd numbered registers have the data and instructions with equal marks and in the even numbered one the marks are different. It is easy to check that in the case of a synchronous counterflow two-phase shift, each instruction will meet all data sets and each data set will for sure meet all instructions.

Let us note the following. From what we said above about the doubled number of register file positions for the shift register model and from the general knowledge of master-slave implementation, one may think that it is enough to have 2n positions in the register files and n processors. However, this way as many as half of the instruction/data pairs will be left without processing. Also note that making the data flow and instruction execution concurrent in time is difficult because we must store the computation results together with the current data set. A special feature of the shift register acting as a synchronous prototype is that in every clock cycle it is necessary to feed the register file with new instructions and data. Actually, this is inconsistent with our concept of asynchronous behavior. This problem will be discussed later, when we talk about incorporating synchro-stratum to make control asynchronous.

Building a Synchronous Dense Pipeline and Using It as a Prototype. One can remove the necessity of renewing input instructions and data at every clock cycle and increase the informational capacity of the register files by using a dense synchronous pipeline as a prototype (a pipeline that can be filled with data without gaps). The structure of a synchronous pipeline is shown in fig.35. Every register has a control circuit that produces a signal (En) that enables writing the register with data.

Fig. 35. Synchronous dense pipeline circuit.

The main problem of building a dense pipeline is how to separate the adjacent data words. For this purpose, an even/odd marker can be provided, which is an extra bit m.j accepting alternating values for successive data (instructions or data sets). For example, mj =- I will correspond to odd data and mj =- 0 to even data. Here is the truth table (table 2) for the function of En.j signal that enables the data transfer from Kegj-i to Kegy.
The best definition of the function on the "don't care" positions is shown in brackets. With this definition, the logic function of the enable signal (taking into account clocking) looks like Eiij =- (mj_i ^mj+i)'-l'j. Thus, it becomes possible to implement a dense synchronous pipeline.

Synchronizing two dense synchronous counterflow pipelines by the same synchro-sequences guarantees that all instructions will meet all data sets, just like in a shift register used as a synchronous prototype. However, a new problem arises here associated with the fact that the same instruction can repeatedly meet the same data set and the same data set can repeatedly meat the same instruction.

If we are going tu use synchronous dense pipelines we imply that information may be written in the pipeline and read out not every clock period. Otherwise a dense pipeline doesn't have a sense. In this situation the distribution of instructions and data in the pipelines may vary in a wide range. One of possible distributions is used in the example shown in fig.36.

Table 2. Truth table of the signal Enj
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Fig. 36. Example of state transitions in two counterflow pipelines.

When the pipelines are initially filled (the left column of instructions/data pairs) and 1^ = I, data 21) meets instruction 47 (middle column) for the first time. When 71 -= I (right column), the edge of instruction 47 continues to interact with data 27.) and the edge of data 27^ continues to interact with instruction 47. The simplest way of avoiding repeated execution of instructions over the same data is to add two extra markers (bits), edj to the data and e'ij to the instructions. Marker edj =- I if data jL) were used by an instruction with even/odd index equal to I, and cdj = 0 if data jL) were used by an instruction with even/odd index equal to 0. Marker cij = I if instruction jl has processed data with even/odd index equal tu 1, and cij - 0 if instruction jl has processed data with even/odd index equal tu 0. Then, if instruction kl with even/odd bit mik and data ID with even/odd bit mdi arrived to processor Pj, the instruction will process the data only if (mdi 8 cik){m'ik ff) cdi) - 1 (this condition takes value I if instruction kl meets the corresponding data ID for the first time only).

Synchro-Stratum Implementation. In spite of the type of the chosen pipeline, we used the same type of synchronization, namely two-track two-phase synchronization. While synchro-pulse 1\-'• I or T-i = I is active, the following sequence of actions must be executed:

- Writing (or not) the new data and instructions to the respective positions of the pipelines;

- Checking the conditions of instruction execution;

- Executing the instruction or canceling the execution, depending on the conditions;

- If the instruction was executed, writing the result to the data pipeline and modifying the instruction in the instruction pipeline (if necessary).

We will not discuss here in detail the control over all this sequence of actions. What is important for us is the following:


Shifting the data and instructions to positions dj and ij occurs with the front edge of synchro-signal +'J'j ('-t'j is the signal that synchronizes the J-th position in the pipelines). 


 The signal of shift completion (it can be formed in a number of ways; we do not discuss them here) initiates the processor functioning. 


 The completion of the processor operation initiates saving the results. 


 The completion of saving the results initiates the falling edge of the synchro-signal '-l'j-

·
If we provide that the synchro-stratum receives the signal of operation completion at the j-th position (±Pj), then relying on the above rules, we can build a signal graph shown in fig. 37 that specifies the behavior of the Synchro-Stratum. 

In fig.37, the signals ±H.e.qL, ±Ac.kL, ±Re(]K, ±AckK determine the left and right interfaces. Variables (ij are the internal variables of the synchro-stratum. From this graph we can derive the Boolean functions for the synchro-stratum gates:

'i'J - ^-i +aj-iaj+i +'-l'j+\, (2 < j < n - 1);
(ij - oj-i + Pj + oj+i, (I <J <n),_________ 7'i - AckL + a^a-i +'-l^, 7„ =- 1',i-\ +0n-i0n+i + Ac.kR,
a(J - AckL + oi; o„-i-i =- a,i + Ac.kR', Ke.qL = Oi +pi, KeqH =- P,i + o„.
The synchro-stratum circuit constructed in accordance with these functions is shown in fig.38.
Fig. 37. Fragment of the unfolded signal graph describing the synchro-stratum behavior.

Discussing the Results. From our standpoint, the major shortcoming of the previously known asynchronous circuit [18] for control of a stage of a counterflow pipeline processor was the necessity to incorporate the arbiters. The reason for having arbitration was that, in order to make the instructions meet the respective data sets the simultaneous shift of instructions and data was prohibited.

We have demonstrated that a synchronous implementation of a counterflow pipeline processor exists which contains no arbitration. Using it, we have built an asynchronous circuit of a synchro-stratum that controls the operation of the pipelines. This circuit contains two gates for every stage of the pipelines. The pipeline stages themselves can be built in various ways. The only requirement to them is the necessity to produce a completion signal. Such signals are used to organize the handshake interaction with the synchro-stratum.

The pipeline throughput is determined by the worst case delay of one stage which, as we can see from fig. 37, is equal to

-^ + max(2ry + t^_,_ , t^_, , 2^ + t^ ) + max(T^_^, 2^ + t^^ , t^ ) 

where t^ is the delay of a synchro-stratum gate, t~^> and Tp are delays of the active phase and the preparatory phase of the instruction execution respectively. If say all instructions have the same duration of the active phase and r^ > t^ , then the pipeline stage delay will be 8-Ty +t~^> +^_ - Note that this expression does not include the delay of the preparatory phase, because for the even (odd) positions of the pipeline this phase is partially overlapped with the active phase of instruction execution for the odd (even) positions. It is easy to see that as in the case of ordinary pipeline, the maximum throughput of counterflow pipelines is reached when they are half-filled. In this case the delay of the pipeline stage will be 87-u +t^ + ti.,.
Fig. 38. Structure of the counterflow pipelines in the GALA representation.

4.4 Wave Propagation Cellular Array

Let us consider a. two-dimensional automata array designed for wave algorithms. In such an array, computing is synchronized by the edges of the signal waves that propagate in it. Ignoring the essence of this computing, we will try to answer the only question: can signal waves propagate asynchronously? According to the above, the answer is "yes" if a corresponding synchronous prototype is available. Let us show the possibility of building a cellular automaton for a synchronous prototype.

Every automaton in a two-dimensional array is connected with its four direct neighbors by two-directional links. The sources (centers) of wave initiation are arbitrary automata of the array in arbitrary time moments (cycles). Every source can initiate one or several waves. We will not discuss here the mechanisms of reactivating the same center. We will also make no distinction between the edge of waves propagating from different active centers. The problem of wave recognition can be solved at the level of data exchange between cellular processors.

If the array contains one source, for example Aij, the wave propagates as shown in fig. 22, b. The shape of the wave is a square rotated 45". Note that the corners of the square and its sides use different ways of propagation. The corners move towards West (W), South (S), East (E) and North (N); their movement is made possible by the automaton when it receives a corresponding signal from the direction of E, N, W or S. The sides move towards SW, SE, NE and NW. The condition for their movement is that every automaton on the square side accepts the appropriate signals from both directions.

It is reasonable to separate the signals that control the movement of corners with the signals that control the movement of sides. In order to do this, let the cellular automaton have two inputs and two outputs for each direction. Let the binary signals arriving at inputs x\w, a'i.9; Xl^, xu\ and taken from outputs yiw, y\s, y\^i v\n control the movement of the sides, and let the signals arriving at inputs x^w, x^s, x-i^i x-iN ^nd taken from outputs y^Wi y^Si y'2^, v-zn control the movement of the corners. Then the conditions of producing the output signals of the cellular automaton can be written as simple logical functions 22:

y-2N — x-2S, V2S — x^m, y^w — x^, y-iu = x-iw i

yiN = xis(.xi^ +Xiw)+ x-iw + x-iij, 

y\s = xin(xi^ + Xlw) + x-iw + x-ilj, 

ylw = XI^(XIS+xim)+ X•2S + X2N, 

yl^ =- xiw(xis+xin)+ x'is + X2N-

It is easy to check that in an array of such automata edges of different waves can move apart propagating in opposite directions, cross or merge partially or fully. The part where two or more waves merge begins to propagate as an edge of one wave. As an example, fig. 39 shows a pattern of five wave fronts in a two-dimensional array, halted at a certain moment. The waves are propagating from five initiation centers and at the moment the sixth center has just appeared as designated by a bold dot. The directions are indicated by arrows each marked with the number of the wave.

Fig. 39. Edge propagation of waves from several sources in a 2D cellular array.

22 These functions pay respect to that wave propagation through side automata, which are the diagonal neighbors of a vertex automaton differs from wave propagation through other side automata.

In a synchronous implementation of a cellular array that uses 2-track 2-phase synchronization system, the cellular automata are split into two subsets: in one of them the automata have an even sum of indexes and in the other one   an odd sum. These subsets are synchronized by signals of different tracks. Using the approach described above, from such a. synchronous prototype an asynchronous implementation can be designed, lo do this, a synchro-stratum that corresponds to the prototype synchronization system should be incorporated into the array. Producing completion signals can be ensured using any workable approach.

5 Conclusion
Strange as it might sound but when we had finished this work, we felt deep disappointment rather than satisfaction. Why should we have been racking our brains over the puzzle of organizing the global synchronization of asynchronous arrays for several years, inventing sophisticated examples and trying to find solutions to them, reading adverse reviews and planning work on these problems for some years into the future? A trivial solution was on the surface!

Of course, the issue is not closed. The approach suggested here, as well as any general solution, is good for all cases and bad in every particular one. For example, using this approach, one can implement a bit pipeline, but that will not be as good a.s the traditional implementation. Therefore, it is very important to understand what question we have just obtained the answer to.

Following this work, we can claim that for a processor array of any dimension, for any multiprocessor system with a Konig interconnection graph and for any distributed synchronous (in the sense of using a clock, common for the whole system) algorithm or a system of algorithms, one can uniformly design a system of "asynchronous synchronization." To this end, it is sufficient to use compatible processors and a synchro-stratum of cells as shown in fig. 17.
The main result on the global synchronization of asynchronous processor arrays and multiprocessor systems stated here corresponds to the case of a synchronous prototype with two-track two-phase master-slave synchronization. As it was shown above, other possible synchronization disciplines may be of interest, too.

In the above discussion about GALA (Globally Asynchronous Locally Arbitrary) methodology, we focused on its first aspect winch is Global Asynchrony. Local Arbitrariness assumes a wide range of ways to provide the handshake signals between Synchro-Stratum and Processor (Automaton) Stratum. It is possible to use self-timing, current sensors, start-stop local clocks, parallel incorporated delays (including data-dependent delays) etc. The reader interested in our results in this area- can familiarize themselves with [6,8,23-27].
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