
Asynchronous Multipliers with Variable-Delay Counters�

Gianluca Cornetta
Computer Architecture Dept.

Universitat Politècnica de Catalunya
08034 Barcelona—Spain

E-mail: cornetta@ac.upc.es

Jordi Cortadella
Software Dept.

Universitat Politècnica de Catalunya
08034 Barcelona—Spain
E-mail: jordic@lsi.upc.es

Abstract
Although multiplication is an intensely studied arithmetic

operation and many fast algorithms and implementations are
avalaible, it still represents one of the major bottlenecks of many
digital systems that require intensive and fast computations. This
paper presents a novel design approach based on the well-known
Baugh and Wooley algorithm, particularly appealing for asyn-
chronous implementations and that may be easily mapped into a
VLSI circuit. This technique has been applied to the design of
a high-speed variable-delay multiplier that resulted to be faster
than other synchronous and asynchronous implementations.

1 Introduction
Multiplication is an intrinsically slow operation sincea large num-
ber of partial products have to be added in order to obtain the final
result. The most common techniques to speedup multiplication
aim at reducing the number of partial products to decrease the exe-
cution time. This may be achieved by encoding the multiplier [4],
or by using parallel counters [10]. The algorithm proposed in this
paper has an implementation inspired by [7] but, unlike [7], it has
a data-dependent execution time.

The idea of datapaths with variable execution time has al-
ready been applied to the realization of several arithmetic oper-
ations such as division and square root [18, 9], addition [11, 15]
and multiplication [13], while a general method for synthesizing
variable-delay pipelined datapaths has been described in [3]. For
example the multiplier described in [13] is a bidimensional array
of full adders with two possible delays. What determines the de-
lay of a row of the array is the corresponding bit of the multiplier.
This design approach limits the implementation only to radix-2
arrays.

The data-dependent computation times are determined by a
speculation function as proposed in [9]. However, in this case it
is not necessary the retiming of the algorithm in order to perform
speculation and error detection and correction in parallel. In
addition, unlike [13] the architecture described in this paper does
not need an adder at the last stage, since digits are generated
in redundant form starting from the most significant ones and
conversion into non-redundant form may be performed on-the-
fly [12].

Synchronization is achieved by means of a dual-rail encoding
of the data bits [6]. This implies the use of differential logic. We
choose to implement the basic cells using CPL gates [2]. The use
of complementary pass-transistor gates is particularly appealing
for low-power applications. Moreover, CPL can be faster than
conventional CMOS logic. Nevertheless, the reduced output volt-
age swing requires the use of buffers to obtain a full-swing output
voltage. In addition the complementary output necessary to im-
plement the dual-rail protocol requires extra transistors and leads
to a larger area occupation when compared with standard CMOS.

�This workhasbeenpartially supportedby the MinistryofEducationofSpainun-
der CICYT, TIC 98-0410,by ACiD-WG (ESPRIT-21949)and by Intel Corporation.

Like [7], the proposed multiplication scheme is based on a triangu-
lar array of counters with a variable delay. The variable execution
time is obtained by making the computation to be data-dependent.
Data dependency is obtained by means of a speculation function
that tries to predict the result by assimilating a reduced number
of input bits. This leads to a faster execution time. However,
since the output of a counter is a speculation, it may be wrong
and a correction of the result may be necessary. What makes the
proposed approach better than other similar implementations is
that, in our case, prediction and error detection and correction run
in parallel and since the error-detection function is faster than the
speculation function we may activate the correction phase before
the speculated value is issued. As a consequence, in case of pre-
diction error the correction logic does not introduce any overhead
in the execution time. This leads to high speedups compared to
other implementations.

The rest of the paper is organized as follows: in Section 2
we describe the implementation of a standard multiplier based on
parallel counters and outline the differences between this standard
implementation and the proposed multiplication scheme. Sec-
tion 3 deals with the implementation details. Section 4 compares
our design with other synchronous and asynchronous designs.
Finally, in Section 5 we draw up some conclusions.

2 Design of Array-Multipliers Based on Parallel
Counters

In this section we deal with a multiplication scheme based on
parallel counters. The use of counters or compressors permits
to decrease the execution time of a multiplication since the over-
all number of partial products to be added is reduced. We first
describe the general architecture of an array-multiplier based on
parallel counters and implementing the Baugh-Wooley algorithm.
Next we will deal with the design approach we propose to achieve
data-dependent computation times. Hence, we will introduce the
performance metrics used to evaluate the design and focus our
attention on some important design issues as well as on the design
of counters with variable execution time.

2.1 Basic Multiplication Scheme

Figure 1 shows the architecture of a 8� 8 multiplier [7] that
implements the productA � B, with A = (a7; a6; : : : ; a0),
B = (b7; b6; : : : ; b0) and ai; bi 2 f0;1g, using the Baugh-
Wooley algorithm [1]. The array topology is triangular so that
the most and the least significant halves of the product can be
computed in parallel. The most significant digitspi’s of the result
are generated in redundant carry-save form and fed into the on-
the-fly conversion (OTFC) unit that operates in parallel with the
multiplier. The OTFC unit converts the result from redundant into
conventional representation [12]. The dashed line separates the
variable-delay part of the multiplier from the interface logic to the
OTFC unit and from the logic that generates the least significant
part of the result. Each element of the array is an(m;n) parallel
counter [10], that is an arithmetic circuit whose inputs arembits of

7010-7803-7057-0/01/$10.00 ©2001 IEEE.

1

(2,2)(3,2)

a 0

(2,2)

b

x

7

(3,2)(4,3)(5,3)(5,3)(5,3)(5,3)(5,3)(5,3)

(3,2)

x

(4,3)

y

(2,2)

(3,2)b

(3,2)(3,2) (4,3)

a b0 6

(5,3) (5,3) (4,3) (2,2)

z7

z5

z1

z0

ba0

(3,2)b

a b0 5
a b1 5a b5 2

(5,3)(4,3)

a b6 1

a b6 2
a b7 1

(2,2)

z8z9

z6

z4

z3

(3,2)b

z2

a7

(3,2)

y

a
0 7 7b

p
2

p
3

(2,3,3)

(3,2)(2,3,3)
p
1

(3,2)(2,2) (3,2)

(2,2)

b7

(3,2) (4,3) (5,3)

a b7 2

(3,2)(3,2)

(2,2)(2,3,3)

Figure 1. Array Implementation of the 8�8 Multiplier.

weight 2w and whosen outputs(n = dlog2(m+1)e) are the bits
with weights from 2w to 2w+n�1 and represent the arithmetic sum
of the input bits. Counters are widely used in array-multiplication
since they permit to reduce the overall number of partial products
to be summed, thus reducing the execution time of the algorithm.
Referring to Figure 1,(3;2)b and(2;3;3) denote abinary full-
adder and a2-bit full-adder respectively. Each redundant digitp i
of theb � b multiplier is composed of log2 r + 1 bits. Thei-th
radix-4 redundant digitpi is formed by three bits: we denote by
si;1 andci;1 the two of them with weight 22b�2i+1 and byci;0 the
one with weight 22b�2i. The assimilation of these bits produces a
pi 2 [0;5], that must be convertedon-the-fly into a non-redundant
radix-4 digit. The OTFC algorithm is described in detail in [8]
and is derived from the one described in [7].

2.2 Area and Time Performance Criteria

The designs are implemented using a set of full-custom CMOS
CPL cells. Delays and areas are represented as multiples of
the delay and area of a two-input XOR-XNOR gate. To make
simulation realistic, parasitic resistances and capacitances were
extracted and worst-case RC load due to wiring was estimated by
assuming a draft layout plan [14]. Routing area was estimated as
well by assuming a pitch of 5� between two adjacent METAL I
wires and taking into account that a wire width is 2�.

2.3 Achieving Data-Dependent Delays

We propose a multiplier that produces a result with a telescopic
delay [3]. Data-dependency is achieved by means of a prediction
function. Let us consider, for the sake of simplicity, the case
of a (5;3) counter; the extension to other types of counters is
straightforward. A(5;3) counter has five inputs and three outputs;
let y = (y4; : : : ; y0) be the input vector andz = (z2; z1; z0)

the output vector. To shorten the execution time, we choose to
compute the sum by assimilating a reduced number of bits. In
the case of a(5;3) counter we use bits(y4; y3; y2) to predict the
result and bits(y1; y0) for error detection and correction. We may
define the prediction function as the functionF p

(y4; y3; y2) =P4
i=2

yi+�where� is prediction of the value of the sumy1+y0

of the discarded bits. The speculated sum� is derived by taking
into account the statistical distribution of the values of the sum
y1 + y0. Since 0� y1 + y0 � 2, our goal is finding a small
interval [�1; �2] so as to:

1. maximizeP (�1 � y1 + y0 � �2);
2. obtain a fast and simple implementation.

Unfortunately these requirements are mutually exclusive, that is,
the higher the number of correct predictions, the more complex

the prediction function is. As a consequence a tradeoff between
number of correct predictions and hardware complexity must be
found. In [8] it hasbeendemonstratedthat, byassuminga uniform
distribution of the operands, the probabilityP (yi = 0) for the
counters of the first and second row of the 8� 8 multiplier of
Figure 1 is the one reported in Table 1. According to these

row P (y1 = 0) P (y0 = 0)
1 0.75 0.75
2 0.75 0.984

Table 1. Probabilities of the Discarded Bits for the (5,3)
Counters.

values, we found thatP (y1 + y0 � 1) > 0:9 for the counters
of the first two rows [8]. Thus a very good choice could be
�1 = 0 and�2 = 1. This also means that

P4
i=0

yi is more

likely to be
P4

i=2 yi or
P4

i=2 yi + 1. As a consequence, to each
combination of the(y4; y3; y2) we may associate two possible
values, namely

P4
i=2 yi or

P4
i=2 yi + 1, as we will see more

in detail in section 2.4. This higher degree of freedom allows
us to synthesize prediction functions with a very high number of
correct predictions and a short execution time as it will be shown
in the next section. The simulations performed have shown that
P (y1+y0 � 1) > 0:9 also for (5,3) countersof larger multipliers.

2.4 Variable-Delay Counters

Figure 2 depicts a possible realization of a(5;3) counter. This
realization is not the one used in this paper. It is explained to
ease the description of the actual approach. In this scheme, that
reminds a conditional sum adder [16], all the possible sum values
are computed in parallel using bitsy4; y3; y2, whereas bitsy1 and
y0 are used to select the correct value. The proposed scheme is

iy
i=2
Σ
4

iy
i=2
Σ
4

+1 iy
i=2
Σ
4

+2

00 1110

iy
i=0
Σ
4

y1
0y

y y y4 3 2

01

critical
path

Figure 2. A Possible Implementation of a (5,3) Counter.

very similar to that of Figure 2,but where only the sum valuesmore

702

likely to happen are computed. This choice is made according to
statistical considerations. Since not all of the possible sums are
computed, what is made in reality is a speculationof the result and
hence a correction may be necessary if the prediction is wrong.
Since this class of counter exhibits a variable-delay behaviour we
call it variable-delay counter (VDC).

2.4.1 Boolean Relations for Fast Prediction

Let us consider the case of a(5;3) VDC. Prediction is car-
ried out by functionF p

(y4; y3; y2) =

P4
i=2 yi + �, where

� = �(y4; y3; y2) is a function that returns an integer value
such that� 2 [0;1]. This means that for every combination
of (y4; y3; y2) we may choose between two predictable values,
namely, we may choose to associate toF p

(y4; y3; y2) eitherP4
i=2 yi or

P4
i=2 yi+1, this may be specified by usingBoolean

relations [5]. Boolean relations allow a higher degree of freedom
during the synthesis since they permit to associate to each combi-
nation of the input variables of a boolean functionf several valid
output values. Among all the possible output values the one that
produces thef with the simplest implementation is chosen. How-
ever a “classical”approach to prediction and correction, like in [9]
does not produce great improvements of the average execution
time, since only a value at a time is predicted and the rate of cor-
rect predictions may be not sufficiently high. But if we anticipate
the computation of the value not predicted byF pby means of other
functions that work in parallel, two predictable values at a time
will be avalaible. This will result in a higher rate of correct predic-
tions andhence in a smaller average delayof the counter. This task
is carried out by functionsF p

�1(y4; y3; y2) =

P4
i=2 yi + � � 1

andF p
+1(y4; y3; y2) =

P4
i=2

yi + � + 1. In addition function
�(y4; y3; y2) is necessary to identify which value has been pre-
dicted by functionF p

(y4; y3; y2) in order to perform the selection
among the predicted values and the correction, in case of wrong
prediction. A correct choice of�1 and�2 is crucial since it deter-
mines:

1. the number(�2��1)+1 of possible output combinationsof
F p that may be associated to each combination of the input
variables by means of boolean relations;

2. the numberblog2(�2��1)c+1 of bits necessary to encode
�;

3. the number 2(�2 � �1) of functionsF p
j ’s.

Finally, Figure 2 shows the truth table of the prediction func-
tion. The central column reports the output specification using
boolean relations, whereas the rightmost one shows the selection
performed by the boolean relation solver [17].

y4y3y2 z2z1z0�
Possible Outputs Selected

000 f0000;0011g 0000
001 f0010;0101g 0101
010 f0010;0101g 0101
011 f0100;0111g 0100
100 f0010;0101g 0010
101 f0100;0111g 0111
110 f0100;0111g 0111
111 f0110;1001g 0110

Table 2. (5,3) VDC Prediction Function Truth Table for
the Boolean Relation.

2.4.2 Architecture

Figure 3(a) depicts the basicschemeof(5;3)VDC. The prediction
functionF p

=

P4
i=2 yi + � operates in parallel with functions

F
p

�1 =
P4

i=2 yi + �� 1,F p

+1 =
P4

i=2 yi + �+ 1 and�. Thus

functionF p
�1 handles the case in whichF p

=

P4
i=2 yi + 1 and

y0+y1 = 0 whereas functionF p

+1 handles the one in whichF p
=P4

i=2 yi andy0+y1 = 1. Since� 2 [0;1], the only combination
of y1 andy0 that produces a prediction error is(y1y0) = (1;1),
that is the one such thaty1 + y0 = 2 62 [�1; �2], hence the
error detection functione(y1; y0) is simply e = y1 ^ y0 and
the correction function isF c

(F p; �) = F p
+ (2� �). Input

combinations(y1; y0) 2 f(0;0); (0;1); (1;0)g identify a good
prediction. The case in whichy1+y0 = 0 is managedby function
s0(y1; y0) = (y1_ y0)

0, whereas the casey1+ y0 = 1 is managed
by functions1(y1; y0) = y1 � y0. For example, considering the
schemeof Figure 3(a) and the simplified truth table of Figure 3(b),
F p is selected if and only ifs0 = �0 = 1 or s1 = � = 1.
According to these considerations, we deduce that a(5;3) VDC
performs the following selection:

4X
i=0

yi =

8<
:

F p if (� ^ s1) _ (s0 ^ �0)
F
p
+1 if (s1 ^ �0)

F p
�1 if (s0 ^ �)

F c if e

(1)

From equation (1) and Figure 3 we deduce that bitsy1, y0 and
� permit to switch between two different delays: a short delay
in case of correct prediction, and a long delay in case of wrong
prediction. Table 3 shows the boolean equations of a(5;3) VDC.
The equations of all the designed VDCs may be found in [8].

� y3 � y2

F p (0; y3 _ y2; y4)
F
p
�1 (0; y4; y

0

4)

F
p

+1 (y4 ^ y2; y4 � y2; y
0

4)

F cy (p1^ (�0 _ p0); (� ^ p00)_ p01; � � p0)
y We defineF p asF p = (p2; p1; p0).

Table 3. (5,3) VDC Prediction and Correction Functions.

3 Implementation
We have designed a radix-4 array for multiplication. All the ba-
sic processing elements are implemented using elementary CPL
gates [2] since they are faster and less power consuming than
standard CMOS logic. The designed gates have been modified
to permit using a 0:8�m and modified to permit the precharge
of the output nodes. The whole design has been simulated us-
ing HSPICE. Prediction functions have been synthesized using
Boolean relations [17], in order to produce a minimum cost func-
tion. In [8] we also prove that the designedcells have a monotonic
behaviour. This is crucial to assure the correctnessof the dual-rail
protocol [6].

To give technology-independent estimations, delays and ar-
eas are normalized with respect worst-case delay and area of an
unloaded XOR-XNOR gate. Area estimations take into account
the area due to interconnections among the cells. It must be also
pointed out that the proposedscheme, as well as the one described
in [7], produces the most significant half of the result in redundant
carry-save form. Hence the result is converted on-the-fly into
non-redundant form as described in [8].

3.1 Synchronization and Timing

Figure 4 showsa sketchof implementation. In Figure 5 is reported
the four-phase handshake protocol of the proposed multiplication
scheme as well as its reset time (2tXOR). As long as the input
operands are not valid, the circuit is held in the precharge state,
forcing the outputs of all the VDCs to logical “0”. When the
operands are valid theP=E 0 signal goes down and the circuit en-
ters the evaluation phase. The completion detection logic (whose
operation is described in section 3.2) forcesRDY high, as soon

703

σ

y y y4 3 2

iy
i= 2
Σ
4

+σ +1 iy
i= 2
Σ
4

+σiy
i= 2
Σ
4

+σ -1

2 - σ

y1
0y

iy
i= 0
Σ
4

y1 y0 σ’()’()

y1 y0() σ()

y1 y0()’ σ y1 y0 σ’() y1 y0

F
p

-1
F c

F
p

+1 F
p

SLOWFAST

+

(a)

y4y3y2
P

yi + � � 1
P

yi + �
P

yi + � + 1 �

000 � �� 000 001 0
001 001 010 � �� 1
010 001 010 � �� 1
011 � �� 010 011 0
100 � �� 001 010 0
101 010 011 � �� 1
110 010 011 � �� 1
111 � �� 011 100 0

(b)
Figure 3. A (5,3) VDC: (a) Basic Scheme, and (b) Prediction Function Simplified Truth Table.

OTFC

CARRY-SAVE

ARRAY

A BP/E’

AxB AxB

PARTIAL PRODUCTS
ARRAY

RDY
(most significant half) (least significant half)

Figure 4. Sketch of Implementation.

as a valid result has been produced. RDY goes down when the
input operands are no longer valid, that is when the circuit is
forced in the precharge state by P=E 0 going high. To generate
a correct RDY signal efficiently and using a reduced amount of
hardware resources, the carry-save array and the OTFC must be
synchronized. To achieve this we exploit the fact that the carry-
save array generates the result digits sequentially from the most
to the least significant one. As a consequence we may delay the
last stage of the OTFC unit keeping it precharged, until the least
significant digit is valid. All the implementation details may be
found in [8].

0VALID RESULT0OUT

RDY

PRECHARGE EVALUATE PRECHARGE

tXOR2

P/E’

IN VALID OPERANDS

Figure 5. Timing.

3.2 Completion Detection

To detect the end of a multiplication we have to detect the end
of the conversion into non-redundant form. This is done using a
completion detection scheme based on the one proposed in [15]
and depicted in Figure 6. In the precharge phase the RDY output
is set to “0” and, since the differential outputs mi and m0

i of the
OTFC are NORed, all the n-mos pull-downs conduct, keeping the
output low. In the evaluation phase, as soon as the last differential
output is valid, all the pull-downs will be disabled and the p-mos
pull-up will push the RDY output at logical “1” . The extra latency
introduced by the completion detection logic is only tXOR, tXOR
being the delay of a XOR gate.

3.3 Extension to Higher Radices

Along this paper we have dealt exclusively with (5;3)-VDCs as
basic processing elements of multiplicative arrays of several sizes.
However the proposed design approach may be extended to higher
radices. [8] reports also the boolean equations for (6;3) and (7;3)
VDCs used to implement radix-8 and radix-16 multipliers. We
must remark that, in the proposed multiplication scheme, each
row of the carry-save array that computes the least significant half
of the result must generate log2 r bits in carry-assimilated form.
This task is performed by a fast carry-propagation adder. For high
values of the radix r, the latency introduced by the adder may be
critical, restricting our design methodology to radices not bigger
than 16.

P/E’

m2n-1 m’2n-1 m0 m’0

From OTFC Unit

RDY

Figure 6. Completion Detection Logic.

4 Comparisons
We will compare the designs both in terms of delay and in terms
of area, even if the implementation described in [13] does not
require any supplementary hardware for the on-the-fly conversion
as it is done in [7] and in the multiplication scheme presented in
this paper. In fact, the use of an OTFC unit requires extra area
respect to a design like [13] that uses an adder at the final stage
of the array. In order to give coherent estimations, all the designs
have been implemented using the same technology and CPL gates.
For the same reason we will limit our analysis to the radix-4 case,
that is the case of the multiplication scheme of [7]. On the other
hand, although the implementation proposed in [13] is a radix-
2 scheme we will compare our design all the same, since with
our approach is impossible to synthesize data-dependent counters
smaller than (4; 3) whereas the approach described in [13] is only
suitable for radix-2 arrays. Delays and areas will be expressed as
multiples of the delay and area of a two-input XOR-XNOR gates.
The average delays of the asynchronous implementations have
been computed by simulating 104 multiplications with randomly-
generated operands and assuming a uniform distribution.

4.1 Delay Estimation

The proposed multiplication scheme has a delay ∆VDCM (where
V DCM stands for variable-delay counter multiplier) that is the
sum of four contributions: ∆VDCM = tarray + totfc+ ntbuf +
tsync, where tarray is the latency of the array, totfc the latency
due to the conversion logic, n 2 [0;3] is the number of buffers
(with delay tbuf) necessary to drive the stage of the OTFC unit

704

situated in the critical path, and tsync the time overhead intro-
duced by synchronization logic. The delay ∆CM of the archi-
tecture described in [7] is ∆CM = tarray; CM + totfc + ntbuf ,
whereas the delay ∆KB of the scheme described in [13] is ∆KB =

tarray; KB + tMADD, tMADD being the delay of a b-bit Manch-
ester carry-resolution adder. According to [8] we may estimate
the delay of the manchester adder as tMADD = 1:22 (7+b)

2 tXOR,
1.22 being a coefficient that takes into account the wiring delay
and that has been determined by simulation assuming realistic
gate loads. The carry-save part of the scheme described in [13]
has a minimum delay of 1:51tXOR and a maximum delay of
4:13tXOR. The array depth of both our multiplication scheme
and the one proposed in [7] may be computed as shown in [8],
whereas for the combinational scheme described in [13] is equal
to the operand size. The conversion time or, in case of the mul-
tiplication scheme proposed in [13] the delay of a Manchester
adder, has to be added to the array delay. To our implementation
and to the one described in [13] must also be added an additional
delay of 2tXOR due to completion detection logic. Table 4 re-

Delay Speedup
b n VDCM [CM96] [KB97] [CM96] [KB97]
8 0 25.51 33.71 33.71 1.32 1.32

16 1 42.86 59.76 61.15 1.40 1.43
24 2 59.79 85.81 88.59 1.43 1.48
32 3 76.69 111.86 121.13 1.45 1.57

Table 4. Normalized Average Delays of the Multipliers.

ports the delays of all the implemented multipliers as well as the
speedups measured. From Table 4 we deduce that the proposed
implementation has a speedupS that goes from 1:32 to 1:45 with
respect the synchronousrealization described in [7] and a speedup
ranging from 1:32 to 1:57 when compared with the asynchronous
realization reported in [13]. The performance increase depends
on the size b of the operands. The larger is b the larger is the
measured speedup. Experimental results reported in Figure 4 are
represented graphically in Figure 7.

1

1:2

1:4

1:6

8 16 24 32

S

b

vs. CM

b

b b
b

b

vs. KB

�

�
�

�

�

Figure 7. Speedup Versus Operands Size for the De-
signed Multipliers.

4.2 Area Estimation

In this section we evaluate the area occupation of both the OTFC
unit and the multiplying array. Table 5 shows the overall areas
of the implemented multiplication schemes obtained considering
the areas of the array for partial products generation, the array
of basic processing elements and the conversion unit or the final
adder in case of [13]. Areas are expressed as multiples of the area
of a XOR-XNOR gate.

5 Conclusions
Variable-delay counters (VDCs) are the basis for the design of
the asynchronous multiplier presented in this paper. The trade-
off between prediction accuracy and calculation speed has been
explored by using Boolean relations for the specification and min-
imization of the behaviour of VDCs. This has resulted in a novel

Overall Area
b VDCM [CM96] [KB97]
8 654.7 491.9 559.2
16 3109.6 2151 2116.8
24 7551.6 5144.1 4672.8
32 14068.4 9516.1 8227.2

Table 5. Normalized Overall Areas of the Implemented
Multipliers.

design that for the first time, to the knowledge of the authors,
outperforms the efficiency of synchronous multipliers.

Counters are highly used in arithmetic circuits. We think we
have only presented one possible application and that the use of
variable-delay building blocks and the exploration of implemen-
tations by means of Boolean relations can be combined in many
other areas that may benefit from the average-case performance
offered by asynchronous circuits.

References
[1] C. R. Baugh and R. A. Wooley. A Two’s Complement Parallel

Array Multiplication Algorithm. IEEE Transaction on Computers,
C-22(12):1045–1047, December 1973.

[2] A. Bellaouar and M. I. Elmasry. Low-Power Digital VLSI Design.
Kluwer Academic Publisher, Norwell, MA, 1995.

[3] L. Benini, G. De Micheli, A. Lioy, et al. Automatic Synthesis of
Large Telescopic Units Based on Near-Minimum Timed Superset-
ting. IEEE Transaction on Computers, C-48(8):769–779, August
1999.

[4] A. D. Booth. A Signed Binary Multiplication Technique. Quarterly
Journal Mech. Appl. Math., 4, Part2:236–240, 1951.

[5] R. K. Brayton and F. Somenzi. Boolean Relations and the Incomplete
Specification of Logic Networks. In Int. Conf. Very Large Scale
Integration, 1989.

[6] J. A. Brzozowski and C.-J. H. Seger. Asynchronous Circuits.
Springer-Verlag, New York, 1994.

[7] L. Ciminiera and P. Montuschi. Carry-Save Multiplication Schemes
Without Final Addition. IEEE Transaction on Computers, C-
45(9):1050–1055, September 1996.

[8] G. Cornetta. Design and Analysis of Variable-Delay Arithmetic
Units. PhD thesis, Polythecnic University of Catalonia-Dept. of
Computer Architecture, Barcelona, September 2001.

[9] J. Cortadella and T. Lang. High-Radix Division and Square Root
with Speculation. IEEE Transaction on Computers, C-43(8):919–
931, August 1994.

[10] L. Dadda. Some Schemes for Parallel Multipliers. Alta Frequenza,
34:349–356, March 1965.

[11] A. De Gloria and M. Olivieri. Statistical Carry Lookahead Adders.
IEEE Transaction on Computers, C-45(3):340–347, March 1996.

[12] M. D. Ercegovac and T. Lang. On the Fly Conversion of Redundant
into Conventional Representations. IEEE Transaction on Comput-
ers, C-36(7):895–897, July 1987.

[13] D. Kearney and N. W. Bergmann. Bundled Data Asynchronous
Multipliers with Data Dependent Computation Times. In 3rd IEEE
Symposium on Advanced Research in Asynchronous Circuit and
Systems, pages 186–197, 1997.

[14] G. Matsubara and N. Ide. A Low Power Zero-Overhead Self-Timed
Division and Square Root Unit Combining a Singe-Rail Static Cir-
cuit with a Dual-Rail Dynamic Circuit. In Symposium on Advanced
Research in Asynchronous Circuit and Systems, pages 198–209,
1997.

[15] S. M. Nowick, K. Y. Yun, P. A. Beerel, and A. E. Dooply. Specula-
tive Completion for the Design of High-Performance Asynchronous
Dynamic Adders. In Symposium on Advanced Research in Asyn-
chronous Circuit and Systems, pages 210–223, 1997.

[16] J. Sklansky. Conditional Sum Addition Logic. IRE Transaction on
Electronics Computers, EC-9:226–231, June 1960.

[17] Y. Watanabe and R. E. Brayton. Heuristic Minimization of Multiple-
Valued Relations. IEEE Transaction on Computer-Aided Design of
Integrated Circuits, 12(10):1458–1472, October 1993.

[18] T. E. Williams and M. Horowitz. A 160ns 54-bit CMOS Division
Implementation Using Self-Timing and Simmetrically Overlapped
SRT Stages. In 10th IEEE Symposium on Computer Arithmetic,
pages 210–217, 1991.

705

