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 Abstract

The object of this paper is the analysis of asynchronous circuits for speed-independence or delay-insensitivity. The circuits are specified as a netlist of logic functions describing the components.  The analysis is based on a derivation of an event specification of the circuit behavior in an STG-like notation, called Signal Graphs. The main advantage of this method is that a state explosion is avoided. A restoration of an event specification of a circuit also helps to solve the behavior identification problem, i.e. to compare obtained specification with the desired specification. We illustrate the method by means of some examples.
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1. Introduction

Speed-independent and delay-insensitive circuits seem to be very promising in a number of VLSI applications, for example in hardware interfacing. Such circuits, which do not use clocks for the ordering of operations, have well known advantages. They are more robust, they have self-checking properties with respect to stuck-at faults and are potentially faster than synchronous circuits in highly parallel and iterative computations, since their correct operation does not depend on worst-case delays of the components [1-3]. 

The design of these circuits appears to be an intellectual problem requiring high skill and experience. In a top-down approach we start the design from a formal specification and proceed to develop a logic circuit, which implements this specification. Such an approach requires verification of the initial specification followed by a formal method of synthesis [3-6]. Another, bottom-up, approach consists in generating standard library modules, which can be used as building blocks for large-scale circuits [2,7].

In the top-down design, analysis is used for performance evaluation [8] and for dynamic modelling of the circuits. Even if our methods of formal design are correct by construction, we still need tools to browse through alternative solutions and to choose the best one. In the bottom-up approach, analysis is a kernel of a design method: there is no guarantee that the circuit implementation we have arrived at is correct in both functional and dynamic sense.

The purpose of this paper is to present a method of analysis, which can be used both in the bottom-up and the top-down design. In [9] we gave a brief discussion of this method. Objects of analysis are here asynchronous circuits, specified by netlists of logic functions of components. Analysis problems can be divided in two parts: first, to check circuits for correctness, i.e. speed-independency or delay-insensitivity, and second, to perform behavior identification, i.e. recognize whether the circuit operates as requested. 

The problem of identification can be decomposed into two independent sub-problems: reconstructing a behavior specification from a netlist of circuit components, and  matching this specification with the desired one.

In the present paper we check the distributivity property to ensure a correctness of circuits. This property is sufficient to guarantee the speed-independence of a circuit behavior. The distributive circuits are the most popular in a design [2,8], as both analysis and synthesis of such circuits are much easier than in the general case of speed-independent circuits. To test for delay-insensitivity we explicitly introduce auxiliary "WIRE"-components (i.e. buffers) into the breaks of all wires, which have to be checked.

The behavior of distributive circuits can be specified with an STG-like model, called signal graphs (SiG), with only one type of causal relations (AND type). In principle, an identification problem for the distributive circuits can be solved in a straightforward manner by derivation of the whole set of global states. However, such a straightforward procedure is not suitable for practical use due to the exponential complexity. The main advantage of our method is that a state explosion is avoided. 

The organization of this paper is as follows. 

In Section 2, we define the low-level model of asynchronous circuits, called the Muller model, together with the related binary state model, called a Transition diagram, and the integer state model, called a Cumulative Transition diagram. We then define classes of semimodular and distributive circuits and show that for both of these a "local criterion" of correctness  does exist in terms of global states of a circuit. In this Section we mainly review the work of D.Muller [10] and ourselves [2]. 

Section 3 defines an event model, called Signal Graphs (SiG) and describes its properties. 

Section 4 defines basic states of a circuit and present their unique properties. A one-to-one correspondence does exist between basic states and signal transitions of a distributive circuit. 

Section 5 is the key section, in which we show major factors that allow us to reduce the search space for basic states down to a polynomial size. We give a criterion for the generation of signal transitions (subsection 5.3), as well as criteria to test for speed-independence (semimodularity and distributivity)  simultaneously with the generation of a new signal transition (subsection 5.4). In subsection 5.5 we consider an iterative way of recalculating the concurrency relation for events and, finally, subsection 5.6 presents the structure of a state space for a circuit. 

Section 6 shows a way to halt the process of acyclic SiG generation and to fold the fragment of an acyclic SiG into a cyclic SiG. 

Section 7 describes the algorithm for the identification and analysis of the asynchronous circuits. If the circuit is speed-independent (more precisely, if the circuit is distributive) the algorithm produces the complete SiG; otherwise it finds the states, where violation of a speed-independence occurs, and produces the initial part of a SiG which precedes these violation. The SiG itself is formed in two stages. At the first stage, an initial segment of an acyclic signal graph, which contains all information about circuit behavior, is constructed. At the second stage, we fold this acyclic fragment into a cyclic SiG.  

In Section 8 we give some circuit examples and demonstrate run-time efficiency of our analyzer TRASPEC. We compare TRASPEC with our state based analyzer TRANAL and trace based verifier VERDECT, developed by Jo Ebergen [11].

 We give our conclusions in Section 9. 

 2. Low-level Models for Asynchronous Logic Circuits 
 2.1. Muller model of Logic Circuits 
Here we describe a circuit as a set of logic gates (elements) according to the Muller model [2,10]. In this model, every circuit element is represented by a combination of a function generator, which implements the corresponding logic function instantly, and an undetermined time delay at the component output. All the delays of physical processes, which are involved in signal processing and transmission within an element and along the connecting wire prior to its fork, are taken to be reduced to the output delay. The skew of the wire delays after the fork is considered to be negligible (in practice the latter requires from the skew to be less than minimal gate delay). A delay induced by a wire may be allowed for, if need be, by inserting an auxiliary component into the wire break - a buffer.

A circuit S  is a set of gates (elements) Z={z1,...,zm} and a set of input nodes X={x1,...,xk} with each gate input connected to strictly one gate output or one input node and with no two outputs interconnected between themselves. 

For simplicity we shall name the elements of the circuit by their corresponding variable names and assume the synonymous usage of terms "element" and "gate".  We shall also use the term "signal" , when we want to consider a logic value at the output of a gate.

A state of a circuit at a given moment of time is a set of the signal values on the outputs of gates and on the input nodes. Behavior of the i-th gate can be described by the Boolean equation

zi'=fi(z1,...,zi,...,zm,x1,...,xk) ,                                                                              (1)

where z1,...,zi-1,zi+1,...,zm are the values in the inputs of the i-th gate, x1,...,xk are the values of signals at the input nodes of the circuit, zi is the signal value of the gate output, zi' is its next value to replace the previous one, and fi(z1,...,zi,...,zm,x1,...,xk) is an inherent function of the i-th gate.

A Muller model of circuit S  (of m gates) is a set of m simultaneous equations of type (1), which describes the behavior of all the circuit gates. 

A circuit is initialized if its initial state is defined, as a binary vector U0{0,1}m+k.

A circuit is autonomous if X=. To check the correctness of the circuit we have to take into account how the circuit is going to be used, which includes the specification of the circuit environment. This environment for the circuit S can be seen as just another circuit SE that communicates with the first one in order to implement correct input-output protocol. Instead of considering circuit S with external input nodes, we can now consider the autonomous circuit S  SE.

Further in the presented paper we will consider only circuits connected to a model of the environment.

We would say that gate zi is excited, if zi'  zi, otherwise it is stable. Circuit goes from one state to another by switching the excited gates (excited values are usually marked with "*" in the Boolean code of a state).

 2.2. Transition Diagrams
Formally circuit behavior  can be presented in terms of global states by a transition diagram (TD).

Definition 2.1. An m-variable TD is an oriented graph such that its vertices are labelled by Boolean m-tuples (diagram states), its edges correspond to the NEXT relation (->) between the adjacent vertices, and that two following conditions are met:

1. If state U = < U1,...,Um > directly precedes state W = < W1,...,Wm >, then every digit Ui , where Ui differs from Wi, is considered to be excited and hence marked by "*" in U;

2. For every subset B = < Wi1,...,Wik > of the excited digits in U = < U1,...,Um > there exists a state W = < W1,...,Wm > such that Wi = Ui, if Ui does not belong to B, and  Wi = eq \A(_,U, )i , if Ui  belongs to B. Accordingly U -> W.

In terms of condition 1 (Definition 2.1) in TD, transition between states is performed through changes of excited gates, while condition 2 indicates that we have no information about the time needed for a gate to fire, hence the TD encompasses all the states induced by different distributions of these times.

Figure 1 shows a simple autonomous circuit and the corresponding TD. 

Let us agree that state W is reachable from state U, iff it is possible to form a sequence of adjacent states starting with U and ending with W. In other words, state W is reachable from U iff in the TD there exists a path from U to W. If each two adjacent states of the path (U=>W) differ exactly in one of their digits then we say that state W is stepwise reachable from state U. The set of circuit states reachable from the initial one is called the operational set. 

 2.3. Semimodular and Distributive Circuits 
There exist, in general, two different ways of switching a gate zi  from its excited state into a stable one. This can be achieved through either

1) the signal transition at the gate output (zi) after an interval equal to its switching delay, or

2) the signal transitions at the inputs of the excited gate that will make the input pattern consistent with the signal value at the gate output (zi) without changing this value.

It is intuitively clear that the last way of removing the gate excitation is totally unsuitable for the circuits whose behavior should be independent of the gate delays. Indeed, depending on the speed of a particular gate zi , it may either to be switched, or it will be "late" and its excitation will be removed. In this case the gate behavior will obviously depend on the value of its delay.
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Figure 1. Non-semimodular 

circuit (a) and its 

transition diagram (b)

Figure 2. Non-distributive semimodular TD 

(a) and its circuit implementation (b)

the detonant state with respect to 

the element c


Definition 2.2. A circuit is termed semimodular with respect to its state U iff in every state reachable from U each excited gate can become stable only through a change of its output.

In a semimodular TD signal transitions of the type 1* -> 1 and 0* -> 0 do not occur. One of the most fundamental results in speed-independent theory consists in the following: to check a speed-independency of an asynchronous system it is sufficient to prove the semimodularity of its TD [2,10].

For the semimodularity analysis let us point out  the special "bad" states which are responsible for semimodularity faults.

A state V of circuit S is to be called a conflict state, iff there are two elements zj and zi excited in V, and after zj firing element zi will toggle into the stable state without changing its output.

Thus, in a circuit whose TD is shown in Figure 1b, it is sufficient to establish that states 10*0* and 0*10* are conflict ones. These states are stepwise reachable from initial state 1*1*1. Therefore this circuit is not semimodular with respect to the 1*1*1.

Semimodular circuits constitute probably the widest class of the speed-independent circuits for which a "local criterion" of correctness does exist.

Further study of the semimodular circuit class is the result of restrictions on the types of parallelism that we allow to happen.

In semimodular circuit it might be impossible to recapitulate entirely the past history of circuit excitation. Thus, in TD (Figure 2b), corresponding to a circuit Figure 2a, one can see that the transition of signal c into 1 is caused either by transition of b into 1 or by concurrent transition of signal a into 1. As a result it is impossible to restore unambiguously which event has switched the element c.

Inhibition of such situations leads to the notion of distributive circuits. Similar to the conflict property, faults of distributivity can be associated with the concrete states also [2,12].

A state W is called detonant with respect to element zi, iff there exists a pair of states U and V which are directly next to W (i.e. W->U, W->V) so that zi is stable in state W and is excited in both states V and U.

Definition 2.3. TD (and, hence, a corresponding circuit) is distributive  with respect to state U, iff each state V reachable from U is not a conflict one and is not detonant in each of its elements.

A circuit in Figure 2a with TD in Figure 2b is semimodular but not distributive. There are no conflict states in the operational cycle of TD, but the state 0*0*00 is detonant with respect to element c.

In the theory of concurrency the class of distributive processes is widespread. Most event-based models cannot specify semimodular processes that are not distributive as well. 

Hence analysis of the speed-independent behavior can be done by determining whether the operational set includes conflict or detonant states. This idea underlies most of the TD-based algorithms for analysis of speed-independent circuits, in particular the first program by D.Muller and W.Frazer [13], the speed-independence checker by P.Beerel and T.Meng [14] and our analyzer TRANAL [15].

 2.4. Cumulative Transition Diagrams 
A history of circuit execution in TD is represented by a set of feasible sequences of signal transitions. Now we will describe another state model, called a cumulative transition diagram (cumulative TD), where only the number of signal transitions is used in order to record this history. Such a diagram consists of a partially ordered set of cumulative states (C-states).

Definition 2.4. A cumulative state (C-state) is a vector of natural numbers with dimension equal to a number of circuit gates and i-th digit is equal to the number of signal transitions at the output of i-th gate on the path from the initial state to the one under consideration. 

The set of cumulative states forms the cumulative TD with arcs corresponding to the following partial order between C-states: for cumulative states W~= <W1~,...,Wm~> and U~=<U1~,...,Um~>: W~ > U~, if Wi~Ui~ for all i=1,...,m.

The reachability notion can be introduced for C-states in the same manner as for binary states of TD. Circuit behavior can be specified by a set of the feasible sequences of cumulative states. One can easily restore the binary state U by the corresponding   C-state U~ and the initial binary state of the circuit U0: U = U~ U0, where  is the bitwise modulo 2 addition operator for integer vectors.

TD and cumulative TD associated with the circuit are equivalent if the circuit is semimodular with respect to its initial state, where equivalence means coincidence of sets of feasible sequences of signal transitions [10].

Figure 1 shows an example of a non-semimodular circuit, Figure 2 shows an example of a semimodular, but non-distributive circuit. Now let us consider an example of a distributive circuit. 
      

Figure 3. The ring control circuit for a micropipeline

Figure 3 contains a pipeline ring based on six Muller C-elements. This circuit can be used as a control circuit for micropipeline ring structures [16]. Each C-element has one inverted and one non-inverted input and can be described by the Boolean equation. Thus, for example, for the second C-element z2 we have an equation: 

z2=z1z3 + z2(z1 + z3).

Let us choose an initial state of the circuit as being equal to 100100, i.e. the first and the forth elements are in the valid state (state "1") and all the others are in the empty state (state "0"). Figure 4 shows TD of this circuit with states ordered by adjacent layers, and Figure 5 contains the initial fragment of the cumulative diagram. 
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Figure 4. The transition diagram of the circuit 

shown in Figure 3.

Figure 5. The cumulative diagram of the circuit 

shown in Figure 3.


 It is not difficult to make sure that TD in Figure 4 is semimodular and distributive. A sequence of binary states s= 10*010*0, 1*1010*0, 01010*0, 0101*10*, 0101*11, 010*01*1, 010*001, 01*1 0*01   is an example of a feasible sequence in the TD in Figure 4. In the cumulative TD in Figure 5 we can find a sequence of C-states  s~= 00*000*0, 0*1000*0, 11000*0, 1100*10*, 1100*11, 110*11*1, 110*121,  11*11*21 , which corresponds to this sequence s of binary states.

The concepts of semimodularity and distributivity are borrowed from lattice theory [17] and reflect the algebraic properties of the cumulative diagrams. A cumulative TD for a semimodular circuit is a semimodular lattice with a zero element [10], while a cumulative TD for a distributive circuit is a distributive lattice with a zero element [12].

Let us now discuss one useful property of C-states of a semimodular circuit.

Property 2.1. C-state U2~ is reachable from another C-state U1~ in a semimodular cumulative diagram iff U1~<U2~ and they are both reachable.

Proof. 1. Assume C-state U2~ is reachable from C-state U1~ (U1~=>U2~). Therefore a feasible sequence of C-states from U1~ to U2~ does exist. By definition of C-state (Definition 2.4) each next state in a feasible sequence is greater than the previous one. Hence U1~<U2~.

2. Assume C-states U1~ and U2~ are both reachable and U1~<U2~. By definition of cumulative TD a sequence of C-states s~=U1~<W1~<...<Wl~<U2~, must exist in cumulative TD, such that there are no C-states between adjacent states of this sequence. A sequence U1~,U2~ can be a special case of the sequence s~.

TD is semimodular, so there must be a feasible sequence of binary states s=U1,W1,...,Wl,U2 , which corresponds to the sequence s~ with the following correlation between binary and cumulative states: U1 = U1~U0, W1 = W1~U0, ..., Wl=Wl~U0,  W2=U2~U0. 

The elements excited in the binary states are also excited in the corresponding cumulative states. Therefore between any adjacent pair of C-states in the sequence s~ a valid signal transition does exist: U1~->W1~->... ->Wl~->U2~ , i.e. U1~=>U2~.        
3. Event Models 

3.1. Change Diagrams
The barrier of exponential complexity in specification and analysis by global state models caused the use of more compact event-based models.

The most popular event specification language is the Signal Transition Graphs (STG) model [18]. In [12,19,20,22] we introduce another event model, called Change Diagrams. For a comparison of STG and Change Diagrams we can recommend [20,21]. 

A Change Diagram model is based on two types of precedence relations between signal transitions in asynchronous circuit: strong precedence and weak precedence. Therefore the set of signal transitions is partitioned into AND-type transitions (with strong predecessors) and OR-type transitions (with weak predecessors). 

It was proved [22] that Change Diagrams are equivalent in modeling power to semimodular TD, and hence to semimodular circuits. The behavior of distributive circuits can be specified by a subclass of Change Diagrams, called Signal Graphs (SiG) with only one type of precedence relation - strong precedence [19,20].

3.2. Signal Graphs

We shall assume that signal transition a strongly precedes transition b, if b cannot occur without the occurrence of a. In the present paper we mainly use 4-phase signal interpretation of transitions. Any event can be represented by  (+z,j)  or    (-z,j), where z is the name of the signal, "+" or "-" is the sign of signal transition with "+" for transition of z from 0 to 1, and "-" - for opposite transition (as only binary systems are considered here), and j is an index denoting the instance number of +z or -z transition (in a one cycle of the circuit operation the signal at the output of any gate can change many times). In [6,19,20] we use the term "signal change" as a synonym of the term "signal transition".

To define the initial state in Signal Graphs it is convenient to identify the initially active arcs. The mechanism of arc activity is similar to the mechanism of Petri net markings. 

Most real circuits have, however, some initial acceleration period before entering into the operating cycle. Within this initial period, the circuit operates in a special manner, and its functioning is usually determined by initial set-reset inputs that do not affect circuit operation afterwards. For such behavior we need some means of representation which would allow certain events to affect only a few first occurrences of other events. We will term these relations disengageable and mark them in our graphs by crosses on the corresponding arcs. The presence of disengageable arcs is the main difference between Signal Graphs and STG without free choice, i.e. interpreted Marked Graphs [18]. 

Definition 3.1. A Signal Graph (SiG) is a tuple < A,I,->,L,M >, where:

 A is a set of signal transitions (changes) or events.

 I  A is a set of initial events (without input arcs).

 ->  (A  A) is the strong precedence relation between events.

 L  -> is a set of disengageable arcs.

 M is an initial marking function, i.e. M: ->  {0,1,2,...}, where M(e) gives the initial number of tokens at the arc e of a SiG .

In [19,20] we consider SiG with two additional restrictions: firstly, the initial marking function is a Boolean function, i.e. M: ->  {0,1} and can thus be defined as a set of initially active arcs, secondly, none of the disengageable arcs can be initially marked. We call such SiG initially-safe. The behavior of any distributive circuit can be specified with an initially-safe SiG. 

In the present paper we consider SiG as being initially-bounded, in order to achieve the highest possible compactness of SiG-specification for any distributive circuit. 

Assume that arc (a,b) is initially marked and M((a,b))=k0. The interpretation of an initially marked arc is as follows: 

- if (a,b) is a disengageable arc, then event a influences only the first (k+1) occurrences of event b and "removed" from the SiG after the (k+1)-th occurrence of b;

- if (a,b) is not a disengageable arc, then event a influence all occurrences of event b except the first k occurrences.

The functioning of SiG is similar to that of Marked Graphs, except for the removing of disengageable arcs. An event is enabled if it is either an initial event or all its input arcs are marked. When an enabled event fires, the marking of each predecessor arc is decremented, and the marking of each successor arc is incremented. All events in SiG are of the AND-type, as they are enabled only if all its predecessor arcs have positive markings.

Let us consider an example of a SiG (Figure 6) for the pipeline circuit of Figure 3. Initially only events +z2 and +z5 can occur, because all their input arcs have tokens. After firing of the event +z2 tokens on the arcs (-z3,+z2) and (+z1,+z2) will be erased. Simultaneously one token will appear at the first output arc of the event +z2 - (+z2,-z1) and another token at the second output arc - (+z2,+z3). The event -z1 will be enabled after this "shift" of tokens, and so on. It is easy to see, by using the introduced functioning rules, that this SiG describes behavior of the circuit shown in Figure 3.
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Figure 6.  SiG specification of the circuit shown in Figure 3.

3.3. Properties of Signal Graphs

The concurrency and strong precedence of events are the basic properties for the analysis of SiG.

Definition 3.2. In an acyclic SiG, event a strongly precedes event b (a=>b) iff in any feasible sequence containing b, event a is present before b.

Events a and b of an acyclic SiG are concurrent (a//b) iff they are both reachable and neither strongly precedes the other (i.e. a=/=>b and b=/=>a). 

We show in [6,19,20] that events a and b are concurrent if and only if they are reachable without one another. If event b is not reachable without a, then a=>b.

For SiG the binary concurrency relation can be generalized to a multiple concurrency relation. In other words, from the concurrency of all pairs of events from some set  a joint concurrency of all events of this set is followed. For example, if (a//b, b//c, a//c) then all events {a,b,c} are jointly concurrent, denoted as //(a,b,c).

Joint concurrency of the events {a,b,c} implies that such a behavior of SiG is feasible, when at the same moment all three events a,b and c can occur simultaneously.

The next property links the concurrency relation with a structure of a set of feasible sequences.

Property 3.1. Events a and b are concurrent iff there exist two feasible sequences in one of which a precedes b and in another of which b precedes a, i.e. one sequence is ...a,...b,... while another is ...b,...a,... .

(The proof is immediate from the definition 3.2.)

Property 3.2. If P is a set of all the immediate predecessors of an event in acyclic SiG, then all the events from P are jointly concurrent.

Proof. Assume that set P of all the immediate predecessors of an event a is not jointly concurrent. Therefore, in P there is at least one pair of non-concurrent events c and b, i.e. either c=>b, or b=>c. But then either c->a, or  b->a is a fictitious relation, i.e. can be removed from the initial SiG specification.                                               
3.4. Correctness of Signal Graphs

Not every SiG can be associated with a process of switching the circuit gates [6,19,20]. Indeed, any sequence of changes at the gate outputs of a binary circuit possesses the following feature of switchover correctness: after up transition of one signal only its down transition becomes possible. 

The second challenge of circuit interpretation of SiG arises from the possibility of autoconcurrency of transitions, i.e. the possibility of concurrent changes of the same signal. 

We allow for unsafe marking to occur during SiG operation. But if marking grows infinitely, then it is impossible to implement such SiG as a system with a finite number of states as it would require an unbounded memory. The concept of SiG connectedness is a generalization of the concept of boundedness. It means that if any SiG event is hampered in firing the whole process will sooner or later be halted. For the completely cyclic SiG this property coincides with the standard graph-theoretic notion of underlying graph strong connectedness.

Definition 3.3. SiG is correct  iff it meets the following three conditions:

1. Each feasible sequence of signal transitions is switchover correct.

2. The set of reachable events contains no autoconcurrent transitions.

3. SiG is connected and bounded.

SiG correctness is necessary for the SiG to specify a process that can be implemented by some speed-independent circuit.

If the circuit is totally sequential, i.e. only one signal transition is enabled in any state (like in a serial counter), then the number of states in a TD of the circuit is equal to the number of events in its SiG. For the parallel circuits, SiG representation is much more compact than a state representation, nevertheless there exists a one-to-one correspondence between the classes of correct SiG and distributive TD [22].

The time complexity of the precedence and concurrency analysis in both acyclic and cyclic Signal Graphs is O(n3), where n is the number of SiG events. The complexity of SiG correctness analysis is O(n4) (dictated by the step of boundedness analysis) [20,22]. 
4. Basic States of a Circuit

A state space of a circuit is not homogeneous. Among various states we can mark out special states, called basic states. A one-to-one correspondence does exist between basic cumulative states and signal transitions of a distributive circuit. This Section defines basic states and presents their unique properties. 

4.1. Excitation Regions and Basic States

A connected subset of binary or cumulative states, called the excitation region, corresponds to one signal transition. Thus, for example, transition +z3 of the  Signal Graph from Figure 6 is associated with a set of binary states {1*10*010, 010*010*, 010*01*1, 010*001} and with a set of C-sates {0*10*110, 110*110*, 110*11*1, 110*121} (outlined by dotted lines in Figures 4 and 5, respectively). Transition  +z3  is enabled in each state of these regions.  Formally excitation region is defined as follows:

Definition 4.1. A set of binary or cumulative states ER is called an excitation region of element zi  iff it meets the following three conditions:

1.  In every state UER  element zi  is excited and has the same value.

2. For each pair of different states U,WER there exists a state VER (it may be that V=U or V=W), which is reachable both from U and W within the set ER.

3. The set ER is maximal, i.e. no additional state can be added to it without violating either condition 1 or condition 2. 

Every occurrence of a signal transition a in a SiG corresponds to a  unique excitation region ER(a) in a cumulative diagram of a distributive circuit. Moreover, according to the distributivity characteristic property, ER(a) has exactly one minimal state, called dominant state and denoted M(a), in which transition a is enabled for the first time [2,12]. For a non-distributive semimodular circuit there are some transitions, whose excitation regions have more than one dominant state [2,12]. After transition a occurs in a dominant state a circuit arrives at a basic state, denoted B(a), i.e. at the state where transition a is fired for the first time. 

Let us return to the example. A binary excitation region ER(+z3) in Figure 4 has one dominant state 1*10*010, and a cumulative region in Figure 5 has one dominant C-state 0*10*110. The basic binary state is 1*11010 (Figure 4) and the basic C-state is 0*11110 (Figure 5). 

Basic states play a major role in the analysis algorithm, which we are going to discuss, therefore we shall give the formal definition.

Definition 4.2.  A state from an excitation region that has no predecessors within the region is to be called a dominant state of this excitation region.

 Basic C-state of the signal transition of an element zi is obtained from the corresponding dominant C-state by adding 1 to a digit corresponding to the element zi.

 For a set of transitions A={a1,...,ak} a basic C-state B(A)  is obtained through bitwise maximum operation over basic C-states B(a1),...,B(ak) for all transitions from the set A.

Thus, strictly according to the concept of a basic state for a single transition we declare that a basic state for a set of signal transitions A is the state, where all transitions from A are fired for the first time.

4.2. Properties of Basic States

Basic states have unique properties:

 a bitwise comparison operation applied to the basic states allows the determination of the concurrency and precedence relations between corresponding signal transitions;

 the basic state of a signal transition can be directly obtained by a bitwise maximum operation from the basic states of predecessor transitions;

 All cumulative states of a circuit are easily derived from the basic states.

We now present these Properties in details.

Property 4.1.  If B(a) and B(b) are the basic C-states of transitions a and b then

1. a => b iff B(a) < B(b);

2. a//b iff vectors B(a) and B(b) are incomparable, i.e. neither B(a)>B(b) nor B(a)<B(b).

Proof. It is sufficient to prove item 1, as item 2 follows immediately from item 1.

1. Necessity. A SiG and its corresponding cumulative TD are equivalent [22]. Therefore  a=>b implies M(a) < M(b) for the dominant C-states of transitions a and b. Consequently, B(a) M(b) and B(a) < B(b).

2. Sufficiency. Assume that a=(xk,i), b=(xr,j) and B(a) < B(b). Then Bk(b)i and for the dominant state of ER(b): Mk(b)i. Indeed, if xrxk, then Mk(b)=Bk(b), while if xr=xk, then Bk(b)Bk(a)+1. Therefore, in any feasible sequence the signal transition a=(xk,i) precedes transition b. By the definition 3.2 this implies a=>b.                                   
Property 4.2. A dominant C-state of any signal transition coincides with the basic   C-state of the set of all the immediate predecessor transitions (i.e. can be obtained by a bitwise maximum operation from the basic C-states of all the immediate predecessor transitions).

Proof. Assume P={a1,...,ak} is a set of all the immediate predecessors of the transition a.

1. By Property 4.1 we know that B(ai)<B(a). In a distributive cumulative TD any basic C-state B(a) has only one immediate predecessor state - the corresponding dominant C-state M(a). Therefore, B(ai)M(a).

2. Since basic C-state B(P) is equal to a bitwise maximum of B(a1), ..., B(ak), we know that B(P)M(a).

3. All C-states B(a1),...,B(ak) are reachable. Hence, by the distributivity of the cumulative TD lattice the C-state B(P), being the maximum of the enumerated basic states, is also reachable.

4. Let us assume that B(P) < M(a). Hence, by Property 2.1, we know that B(P)=>M(a), i.e. B(P) can be reached earlier than M(a). Since P contains all the immediate predecessors of the transition a, all preconditions for the transition a exist in B(P) and consequently B(P)ER(a). Therefore, M(a) cannot be a dominant state of ER(a). We have a contradiction. So, the assumption of item 4 is wrong and M(a)=B(P). 


Property 4.3. For every C-state U~ of a distributive circuit (with the exception of the initial state) there exists a set of incomparable basic C-states, from which U~ can be calculated by a bitwise maximum operation. Moreover, such a representation is unique.

(The proof of this Property is rather cumbersome and has consequently been placed in the Appendix A1).

Though the last Property has been formulated for a distributive cumulative TD "as a whole", it is valid also for any finite distributive fragment of a cumulative diagram, which starts in the initial state. We shall call such a distributive fragment of a cumulative TD as a distributive cumulative segment.

4.2. Basic States and Signal Transitions

Assume now that we have somehow derived a distributive cumulative segment of a circuit. From this we can construct the corresponding acyclic SiG, i.e. arrive at the event-based representation. We can use only basic states of the segment in this process. Let us spell out  the rules of this construction.  

Rules for construction of an acyclic SiG from a distributive cumulative segment of a circuit

SiG1: Associate a single signal transition a with each basic C-State B(a) of the cumulative segment.

SiG2: Assume that transition a strongly precedes b iff B(a) < B(b) and there are no other basic states between B(a) and B(b).

SiG3: Treat transitions without predecessors as the initial events.

An acyclic SiG derived from a distributive cumulative segment is to be called a signal segment.

Any distributive cumulative segment of a circuit and a signal segment, constructed from it by rules SiG1-SiG3, are equivalent, where equivalence means coincidence of sets of feasible sequences of signal transitions.

Let us apply rules SiG1-SiG3 to the distributive cumulative segment shown in Figure 5. The resulting signal segment is shown in Figure 7. We use superscripts in order to distinguish occurrences of the same event. Thus, +z21 is the first occurrence of the signal transition +z2 and +z22 is the second one. 
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Figure 7. A signal segment corresponds to a fragment of the cumulative diagram shown in Figure 4

5. Generation of an acyclic Signal Graph

The major points of Section 5 are:

1. We will show that there are three major factors that allow us to reduce the space for a search for basic states down to a polynomial size, namely:

 a real interconnection between the circuit gates (subsection 5.1);

 a "maximal parallelism strategy" for a generation of signal transitions (subsection 5.2);

 the concurrency between events.

2. We give a criterion for the generation of signal transitions, which uses all these factors (subsection 5.3).

3. We discuss how to test for speed-independence (semimodularity and distributivity)  simultaneously with the generation of a new signal transition (subsection 5.4).

4. In subsection 5.5 we consider an iterative way of recalculating the concurrency relation for events, which were recently generated.

5. Finally, in subsection 5.6 we discuss the structure of a state space for a circuit.

5.1. An interconnection between circuit gates

The usefulness of the above rules SiG1-SiG3 (Section 4.3) for a construction of Signal Graphs is limited because these rules apply to the basic states of a circuit and we still do not understand how to find them. Thus, we are now ready to discuss the key question: How many states should we generate in order to find all basic states and to test speed-independence of a circuit. To answer this question we have to investigate the structure of the state space. 

Our final aim in this Section is to find a way to reduce sharply a field of a search for the basic states. This possibility is based on a strict limitation for the fan-in and fan-out of real gates. Thus, for n-MOS, p-MOS and CMOS gates fan-in is normally not higher than 4 or 5, for TTL gates it is 5-8, while for ECL it is from 3 to 5.

In terms of a logic circuit we can introduce two concepts to reflect the actual coupling of the components. Let us denote by D(zi) a set of those elements, on which zi depends significantly (a "fan-in" of zi), and by d(zi) the set of elements, which depend significantly on zi (a "fan-out" of zi). We shall call D(zi) a dependence list of zi and d(zi) an affect list of zi.

For the circuit, shown in Figure 1, the elements have the following dependence and affect lists: D(a)=D(b)={c}, D(c)={a,b}, d(a)=d(b)=c, d(c)={a,b}. For the micropipeline control structure (Figure 3) the affect and dependence lists for each gate coincide: D(zi)=d(zi)={zi-1, zi, zi+1}. The element zi depends on itself and hence ziD(zi).

If some signal transition occurs at the output of a gate zi, then it can influence only those components which belong to its affect list d(zi). On the other hand, according to Property 3.2, any transition of zi is enabled only after an occurrence of some concurrent transitions {b1,...,bk} of elements |b1|, ...,|bk|, where all |b1|, ...,|bk|  D(zi). We denote by |bi|, the name of a signal for the signal transition bi .

In Section 5.3 we will show how to use an interconnection between the gates, and the concurrency of events to reduce the space for a search for basic states.

5.2. Maximal parallelism strategy for a SiG generation

Let us consider the process of generating a SiG, when it is known in advance (assume that we have an oracle) that the circuit in question is "OK", i.e. a distributive one.

Let us return in this respect to our example of the micropipeline control structure (Figure 3) and assume that the delays of all gates in this circuit are equal. In this case it would be justified to consider the circuit operation as organized in "tick cycles" (a systolic operation). During the first tick cycle all the transitions, which are enabled in the initial state, are fired (signal transitions +z21 and +z51 in the acyclic SiG shown in Figure 7). During the second cycle all the transitions, which became enabled as the result of the first cycle, are fired (signal transitions -z11 and -z41 in Figure 7), etc.

Such a mode of operation of a parallel system is known as a strategy of "maximal parallelism" (everything, which is ready to fire, fires immediately and concurrently). Such a cycle-by-cycle operation of a circuit makes it possible to single out in its SiG different tiers with all the transitions occurring in the kth cycle organized into the k-th tier. In formal terms one tier of an acyclic SiG is the set of signal transitions with the same reachability depth. 

We denote by Sk , the k-th tier of events; by SSk, a signal segment which contains exactly k tiers; by CSk, a cumulative segment, corresponding to the k-tier signal segment SSk; and by h(a), the reachability depth of an event a. In Figure 7, for example, S1={+z21,+z51}, S2={-z11,-z41}, h(-z41)=2 and SS2  ={+z21,+z51,-z11,-z41}.

5.3. Condition for a generation of signal transitions

Assume now that we have succeeded in deriving a k-tier signal segment SSk and are about to construct the next (k+1)th tier Sk+1. In order to check whether we should expect in Sk+1 any action for the element zi (whether a new transition of zi would be enabled in the next tier, or another detonant cause for the same transition of zi will be found, or zi will loose its previous excitation), it is sufficient to consider only those signal transitions that actually determine the behavior of zi. We call such sets of transitions the sets of active transitions.

Definition 5.1. The set A of signal transitions is called an active set of k-tier for an element zi iff it meets  the following conditions:

1. All the signal transitions from A are jointly concurrent.

2. Reachability depth h(A)=k, i.e. all the transitions from set A belong to the tiers from 1-st to k-th and at least one of them belongs namely to the k-th tier.

3. All the elements corresponding to the transitions from A are included in the dependence list D(zi) of element zi.

These three conditions are relatively transparent. The first of them derives from Property 3.2, which states the concurrency of immediate predecessors. The second condition states that if h(A)<k then A should cause some event from the previous tier to occur, while in the case of h(A)>k the same must be true for some event from one of the next tiers. Condition 3 formalises our consideration from Section 5.1: clearly, the behavior of zi is effected only by the components that are directly connected with the inputs of zi .

We are ready now to show a condition for a signal transition to be generated in the current tier of a signal graph.

Proposition 5.1. (Generation condition). Transition a of the element zi belongs to the k-th tier (k>1), and its immediate predecessors form set A iff:

1. A is an active set of the (k-1)-th tier for zi.

2. Element zi is excited in the basic C-state B(A).

3. There is no other set of transitions A1 such that B(A1)<B(A) and B(A1)ER(a).

(We put the proof of this Proposition in Appendix A2).

Let us now give an interpretation of the last claim. 

Signal transition a of the element zi belongs to the k-th tier if the following conditions are met:

 the corresponding excitation has not occurred earlier in any of the previous tiers of the cumulative segment;

 the minimal "cause" of this excitation "has ripened" exactly by the kth tier;

 this cause can encompass only concurrent transitions of those elements, which  belong to the dependence list of zi.

The situation at the first (initial) tier of the signal segment is clear enough: it contains only transitions enabled in the initial state of the circuit.

Proposition 5.1 relies on the distributivity and hence semimodularity of the corresponding circuit. Therefore its application calls for the methods of checking for distributivity and semi-modularity especially oriented towards their employment in the process of SiG generation.

5.4. Conditions to test for speed-independence

We now claim the detonantness and conflictness conditions, which allow us to test for distributivity and semimodularity of the circuit during the process of a SiG generation. The technique to prove these conditions [15] is similar to the one for the generation condition (Proposition 5.1). Therefore, to save some space, we omit proofs for the following Propositions 5.2 and 5.3. Instead we will give some intuitive explanations.

Proposition 5.2. (Detonantness condition). Let CSk-1 be a distributive segment. Segment CSk contains a detonant  transition  with  respect  to  element  zi  (and  hence 

segment CSk is not distributive) iff in the corresponding signal segment SSk there exist:

 a signal transition of the element zi  with the set of immediate predecessors A and 

 a set of signal transitions A1, 

which meet the following conditions:

1. A1 is an active set of the (k-1)-th tier for zi.

2. Element zi is excited in the basic C-state B(A1).

3. Basic C-states B(A) and B(A1) are incomparable. 

To sum up, the circuit violates distributivity with respect to element zi iff we can find an active set A1, which forces an excitation of zi, and its basic state B(A1) is incomparable with the basic state of some signal transition of zi discovered earlier.

Proposition 5.3. (Conflictness condition). Let CSk-1 be a distributive cumulative segment and let us assume that there are no detonant signal transitions in the next     (k-th) tier.

Then the k-tier cumulative segment CSk is not semimodular by element zi iff in the corresponding signal segment SSk  there exist:

 a signal transition of the element zi with the set of immediate predecessors A and 

 a set of signal transitions A1, 

which meet the following conditions:

1. A1 is an active set of the k-th tier for zi.

2. Bi(A)=Bi(A1).

3. B(A) < B(A1).

4. Element zi is stable in the basic C-state B(A1).

Hence, some set of signal transitions A1 from the kth tier disables another transition a at the output of the element zi, if we can find an active set A1, which forces a "stabilization" of zi output, and A1 can occur after transition a becomes enabled, but before transition a is really fired.

5.5. Concurrency of events

To check activity of a set of transitions (Properties 5.1-5.3) we need information about concurrency of events. Hence, we look for an iterative technique to determine the concurrency relation, compatible with the tier-by-tier generation of signal graphs. This technique departs from the following property:

Proposition 5.4 

1. All the events of the same tier are concurrent.

2. Let event a belong to the kth tier, while b belongs to one of the previous tiers. Then a and b are concurrent iff b does not strongly precede any event that immediately precedes a.

Proof. Item 1 follows directly from the definition of a tier: if a=>b, then a and b cannot be in the same tier.

Item 2. Necessity.  Assume that a//b and a1 ->a. If b=>a1 then the transitivity of => implies b=>a. We have a contradiction.

Item 2. Sufficiency. Condition (aSk  and bSSk-1) obviously implies a=/=>b.

Let b=>a. Event b cannot be the immediate predecessor of a (b-/->a), otherwise, by  the reflexivity of the precedence relation, b=>b->a would be fulfilled, which contradicts condition 2 of the Proposition. We also have a contradiction concerning condition 2, if there is another event a1: b=>a1 ->a. Hence, b=/=>a.

Since a=/=>b and b=/=>a, by definition 3.2,  b//a.                                           
5.6. The structure of a state space

In the method presented the complexity of a test for speed-independence and a SiG generation is determined by a number of examined states that are considered as candidates for being basic states. All the states of the operational set of the circuit can be divided into two classes: "dynamic", in which some of the events can be expected (new enabled transitions or the faults of speed-independence) and "inertial", where nothing new can happen and where the circuit behavior is fully dictated by the past history of the process. It is the latter states that turn out to be "redundant" and play no role in SiG generation.

In the TD of the micropipeline control structure (Figure 4) the underlined state 1*101*10 is an example of an inertial state. Indeed, the circuit can get into this state following joint occurrences of transitions +z2 and +z5. However, these transitions occur at the inputs of different elements and both of them are not consumed by any of the elements.

The number of the dynamic states in a cumulative segment of a circuit should not exceed O(M*R*2p), where p is the parallelism rank of an element, i.e. the maximal number of concurrent transitions at the inputs of one element; R is the maximal fan-out; and M is the number of signal transitions generated in a signal segment. Since parameter p is bounded by a fan-in of the element and p usually has small values (3-4), the number of dynamic states in the operational set of the circuit is bounded by the linear function from the number of signal transitions. Therefore, for highly parallel circuits the number of dynamic states is considerably smaller than the number of the inertial states. This is exactly the reason why the algorithm presented in this paper is more efficient than the algorithms based on a restoration of all states of the operational set.

6. Folding of acyclic SiG

If the circuit operates in a cyclic manner, then its behavior is described by an acyclic SiG, which is infinite. This acyclic SiG describes either a periodic or a quasi-periodic (periodic after a moment of time) process [9,20]. We need to find a way to halt the process of acyclic SiG generation and to fold this fragment of an acyclic SiG into a cyclic SiG.

6.1. Similar signal transitions

When generating the acyclic SiG we cannot afford to lose any signal transition and any relation between signal transitions.

In the acyclic SiG, signal transitions will start to repeat themselves. In this section we will learn to capture these repetitions. Let us introduce the notion of similarity of transitions: two signal transitions of the same sign at the output of the same element are similar if corresponding excitation regions contain at least one common binary state.

For a similarity analysis we can use a cyclic code of the circuit [22]. This code contains the information about the number of transitions in the circuit operational cycle for each element. Since in the semimodular circuit the occurrence of one transition cannot disable another transition, a cyclic code of a semimodular (and distributive) circuit turns out to be unique.

The cyclic code can be calculated as a bitwise difference between two of the closest cumulative states corresponding to the same binary state. For example, in the cumulative TD of the pipeline (Figure 5) C-states 00*000*0 and 22*222*2 correspond to the same binary state 10*010*0 (the initial state in Figure 4). Hence, the cyclic code is equal to 222222, i.e. each element is switched twice during one operational cycle.

Similarity analysis can be performed on the basis of the following proposition.

Proposition 6.1 Let a and b be signal transitions of the same element zi with cyclic dominant binary states. Assume also that a occurs before b, i.e. B(a) < B(b).

Then a and b are the closest similar transitions iff Bi(b) - di = Bi(a), where Bi(b), Bi(a) are digits of the C-states B(a), B(b) and  di is a digit of the cyclic code d, corresponding to the element zi.

Proof. Necessity. Assume a and b are the closest similar transitions of zi, i.e. there is no transition c, which is similar to a and a=>c=>b. Since the dominant binary state, corresponding to the cumulative dominant state M(a) is cyclic, C-state M(a)+d must be in the cumulative TD. In addition zi is excited in M(a)+d, therefore C-state M(a)+d belongs to some excitation region of zi.

Similarity of a and b implies that M(a)+d  ER(b), as the same C-state is reachable from both M(a)+d and M(b) without changing the value of zi. However, all the cumulative states from ER(b) have the same value of the digit corresponding to zi, therefore Mi(a)+di=Mi(b) and hence Bi(a)+di=Bi(b).

Sufficiency. Assume that the condition Bi(a)+di=Bi(b) is met and that as a consequence Mi(a)+di=Mi(b) .

Since M(a) corresponds to the cyclic binary state, M(a)+d is reachable in the cumulative TD. Element zi is excited in M(a), therefore zi  is also excited in M(a)+d.

Let C-State M(a)+d correspond to a binary state U and C-state M(b) - to a binary state W. The ith digits of U and W are equal and are excited. Moreover, between U and W no transitions of zi are enabled. Therefore both these states are from the same excitation region ER(b), though at the same time UER(a).

Therefore ER(a)  ER(b)   and ,by definition, then transitions a and b are similar.
 In the acyclic SiG in Figure 7 transitions +zeq \A(1,2) and +zeq \A(2,2) are similar. 

Indeed, B(+zeq \A(1,2)) = 010000, B(+zeq \A(2,2)) = 232221 and B2(+zeq \A(2,2)) - d2= B2(+zeq \A(1,2))= 1.

6.2. Complete segment of an acyclic SiG

The relations between different occurrences of the cyclic events a and b in a SiG are matched [22], i.e. if ai -> bj, then for any m ai+m -> bj+m holds (the relation cannot disappear). The reverse statement is also valid: if ai -/-> bj, then for any m              ai+m -/-> bj+m   holds (the relations cannot appear). 

Therefore, to capture all the direct precedence relations between signal transitions, it is sufficient to consider relations only for the first occurrences of each similarity class. 
We now define a complete signal segment, which contains all the information we need to fold an acyclic SiG into a cyclic SiG.

Definition 6.1. A signal segment is complete iff it contains all the first occurrences of the similar signal transitions as well as all their immediate successors.

The following proposition is valid [15].

Proposition 6.2 (Halt criterion for a SiG generation). The halt criterion for the SiG generation process is the completeness of a signal segment. 

6.3. Rules for folding

On the basis of a complete segment, by using simple rules, it is possible to form a cyclic SiG, which specifies circuit behavior.

Rules for folding of a complete signal segment into a cyclic SiG

Let SSk be a complete distributive signal segment and D be a signal graph constructed from SSk.

F1: Associate with every similarity class E(a)SSk a single transition a in SiG D.

F2: If a is non-repeated, i.e. E(a)={a1} and for some similarity class E(b)SSk of the signal segment we have a1->bj , where j1, then

 if b is a non-repeated transition (a1->b1), then connect a to b in SiG D by an arc      a->b;

 if b is a cyclic transition, then connect a to b in SiG D by a disengageable arc with     the initial marking equal to (j-1).

F3: If transition a is cyclic, i.e. E(a)={a1,...,ai,...} and for some similarity class E(b)SSk of the signal segment we have a1->bj, where j1, then connect a to b in SiG D by an arc with the initial marking equal to (j-1).

The cyclic SiG obtained in accordance with  these rules is indeed equivalent to the initial circuit in terms of the set of feasible sequences of transitions.

Application of the rules F1-F3 to the 8-tier complete signal segment of Figure 7  results in the cyclic SiG shown in Figure 6.

7. The algorithm for identification and analysis of  circuits

We are now prepared to describe the structure of the algorithm we suggest in order to solve the identification and analysis problems regarding the asynchronous circuits.

Input: A netlist of logic gates and an initial state of the circuit.
Output:  Signal graph (decomposed into tiers).

                Violations of the circuit semimodularity and distributivity.

                Cyclic or acyclic behavior.

STEP1. Generate a current tier of an acyclic SiG.

  For the initial tier: all transitions enabled in the initial state.

  For others tiers:  apply the "change generation condition" (Proposition 5.1).

STEP2. If the current tier is empty then the circuit is acyclic.

  goto the END.

STEP3. For each transition of the current tier check the 

           "detonantness condition" (Proposition 5.2).

   If it is met, then the circuit is not distributive.
   goto the END.

STEP4. For each transition of the current tier check the 

            "conflictness condition" (Proposition 5.3).

   If it is met then the circuit is not semimodular.
   goto the END.

STEP5. Form the list of concurrent transitions for every transition

              in the current tier (Proposition 5.4).

STEP6. Analyze the similarity of the transitions from the current 

              tier (Proposition 6.1).
STEP7. Apply to the current signal segment the 

            completeness criterion (Proposition 6.2).
   If the segment is not complete  goto STEP1.

STEP8. Fold the complete signal segment into a cyclic SiG 

              (Rules F1-F3 from Section 6.3).

END

This algorithm is implemented in the system TRASPEC, which is a part of FORCAGE 3.0 CAD system for asynchronous circuits. CAD FORCAGE includes also system TRASYN for the synthesis of speed-independent circuits from Change Diagram and Signal Graph specification and system TRANAL to test asynchronous circuits for speed-independence. The latter system is based on a derivation of all states of an operational set of a circuit.
8. CAD tool to test for speed-independence and 

    to identify asynchronous circuits
A CAD tool TRASPEC implements the algorithm from Section 7. It has been written in Turbo Pascal at IBM PC compatible computers. The analyzer TRASPEC has been applied to some control circuits commonly used in asynchronous design. A few circuit examples and run-time efficiency of this program will be given in the next subsections (Tables 1 and 2). We compare TRASPEC with our state based analyzer TRANAL and trace based verifier VERDECT [11] (Table 2).

Table 1. Speed-independence checkers TRASPEC and TRANAL give numbers of signal transitions, tiers and reachable states in an operational set

	Circuit
	No. of signal transitions (TRASPEC)
	No. of tiers (TRASPEC)
	No. of states (TRANAL)
	Speed-independence

	Serial 16-Counter 

(Figure 8)

Asynchronous switch (Figure 9)

Asynchronous switch with an extra delay in the control path (Figure 9)

Micropipeline control ring (Figure 3)

Micropipeline control queue (Figure 10)
	212

52

22

12

50


	212

41

14

6

20
	212

192

209

30

131072


	Yes

Yes

No

Yes

Yes




8.1. A serial delay-insensitive counter

We start with an example of a serial counter [2]. Figure 8 shows that the 16-counter consists of 4 TOGGLE elements and one completion indicator on the NAND gate. Each TOGGLE can be realized as a speed-independent T-flip-flop on 6 NAND gates [2]. Analysis of this circuit has demonstrated that it is totally sequential, i.e. it has exactly one enabled transition in each state from the operational set. Both TRANAL and TRASPEC declared this circuit to be speed-independent (distributive) and delay-insensitive to all intermodule wires. Since for totally sequential circuits the number of states in a TD of the circuit is equal to the number of events in its SiG, for such circuits state-based algorithms can be even more efficient than the event-based algorithm presented in this paper. Analysis of the 16-counter by TRANAL system took 0.33 sec, while by TRASPEC system 1.98 sec.
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Figure 8. A serial delay-insensitive counter

8.2. A micropipeline asymmetric switch

In [23] an asymmetric switch for a micropipeline vector multiplier is presented. This switch implements a conditional data transfer, i.e. depending on the value of control signal, either both data signals are passed through or only one of them is crossed over, and the other waits.
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 Figure 9. A micropipeline asymmetric switch

The control part of a micropipeline switch is shown in Figure 9. For this example we choose a simple model of the environment, which allows us to alternate two modes of the switch operation. The SELECT module in Figure 9 [16] steers an incoming event to one output or the other, depending on the value of a data control input. The implementation of a SELECT element [23] based on two XOR gates and two latches is not speed-independent, but we want to verify behavior of this circuit, treating the SELECT element as a black box. For this reason we can describe each of the SELECT elements with two Boolean equations. For example, SELECT element in the request part of the switch described by the equations: 

T0=Ctl(C2F0 + C2F0) + T0Ctl;

F0=Ctl(C2T0 + C2T0) + F0Ctl.

Such a specification of the SELECT element allows us to hide all hazardous behavior inside the SELECT element.

We performed two tests for the switch circuit. First, to ensure that it is speed-independent. Secondly, to test delay-insensitivity of the control data protocol. The bundled data protocol used in the micropipeline technique implies that the switch is not delay-insensitive to the Ctl wire (the environment puts valid value at the Ctl wire and then produces an event on the request wire Req_Ctl). In order to show this up we add a wire-buffer component into the Ctl path (Figure 9) and perform the second test. Both TRANAL and TRASPEC systems complained that the switch is not delay-insensitive to the Ctl wire. 

8.3. A micropipeline control structure

Figure 10 shows an 8-cell control circuit for a micropipeline (in [11] it named also 8-place queue). In contrast to the example of the 6-cell ring control structure, shown in Figure 3, here we use a queue structure with the environment for a producer (to the left in Figure 10) and a receiver (to the right in Figure 10). Each cell has one C-element, named put[i],  and two wire-buffers, named ack[i] and req[i]. We add these buffers to test delay-insensitivity of the circuit. This circuit has highly parallel  behavior. The operational set contains 131072 binary states (this number was reported by TRANAL), a rank of circuit parallelism, i.e. a maximal number of parallel transitions enabled in one state of the circuit, is equal to 8. An analysis of this circuit on a 25 MHz IBM PC/AT-386 by TRANAL took 1 hour and 3 minutes, while TRASPEC on the same computer gave run-time 1 sec. Both systems report that the circuit is delay-insensitive. 
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 Figure 10. A micropipeline queue control structure

8.4. A comparison of CAD tools 

We compare TRASPEC with our state based analyzer TRANAL [15] and the trace based verifier VERDECT, developed by Jo Ebergen [11] (Table 2). Since the analysis algorithm presented in [14] is not more efficient than ours, implemented in TRANAL, we omit detailed comparison with the speed-independence checker by P.Beerel. The analysis of the micropipeline control queue (Figure 10) by this checker took 1 min 16 sec on a DEC Station 5100. Another trace based verifier, which can be used to verify specification of the circuit for speed-independence, was developed by David Dill [24]. We choose VERDECT to compare because it can check more properties [11].

Table 2. A comparison of CAD tools (run-time and data-memory statistics)

	Circuit


	Micropipeline control queue (Figure 10)


	Asynchronous switch (Figure 9)

Test 1


	Asynchronous switch (Figure 9)

Test 2 (with an extra delay)

	CAD Tool
	Time
	Memory
	Time
	Memory
	Time
	Memory

	TRANAL
	1 h 3 min
	400 Kbytes + disk swapping
	0.28 sec
	100 Kbytes
	0.27 sec
	100 Kbytes

	VERDECT
	5 min
	22 Mbytes
	0.99 sec
	122 Kbytes
	1.13 sec
	128 Kbytes

	TRASPEC
	1 sec
	100 Kbytes
	0.38 sec
	100 Kbytes
	0.17 sec
	100 Kbytes


We have to add a few remarks about this comparison.

Remark 1. We run TRANAL and TRASPEC on 25 MHz IBM PC/AT-386 and VERDECT - on SUN4 (the Micropipeline control queue verification) [11] and SPARC 1 workstations (the switch verification). 
Remark 2.  We compare TRASPEC with the flat mode of VERDECT [11]. We can also use decomposition method (like stepwise and partwise verification in [11]) to simplify the analysis with TRASPEC based on the AND-decomposition of Signal Graphs [15]. 

Remark 3. Direct comparison of the circuit analyzers with the trace analyzers is difficult. The trace analyzers (like VERDECT) actually verify the specification of the circuit, not the circuit itself. The main problem for a designer, who uses such systems, is to write a trace specification for an existing circuit and to ensure that he does not make any mistake in this specification.

On the other hand, VERDECT allows us to verify behavior with both external and internal nondeterminism, while all the circuit based analyzers for the moment allow only the first (we have to express this external nondeterminism in the model of the environment).

Remark 4. Semi-modular circuits constitute the widest class of the speed-independent circuits for which a "local criterion" of correctness exists. The state based systems (like TRANAL) can easily test a circuit for semimodularity. It is a problem for the event based system TRASPEC to analyze the whole operational cycle of a non-distributive semimodular circuit, because it implies the extension of an event model from Signal Graphs to Change Diagrams with two types of relations between events. Generation of Change Diagrams is a much more complex task.

9. Conclusions

We have suggested the method jointly to solve two problems: analysis for speed-independence (a timing correctness) and a behavior identification based on the "circuit assembler language" - Signal Graphs (a semantic correctness). The method proposed depends exponentially on the extremely small parameter that is the number of concurrent signal transitions at the inputs of one circuit gate. Therefore, the algorithm presented in this paper is more efficient than the algorithms based on a restoration of all states of the operational set. The latter depends exponentially on the number of gates in the circuit and the number of concurrent transitions in the whole circuit.

Technological significance of the method lies in the possibility of a tight integration of the top-down and bottom-up design procedures. For the circuit obtained by engineer methods we can restore the initial specification (a bottom-up process in TRASPEC system). From the latter an automatically synthesized circuit can be derived (as a result of a top-down design method in TRASYN system). This allows us to compare automatic and manual or partly automatic design techniques, and to formalize engineer skill of synthesis.

There are many issues that remain to be explored. Extension of the method to the class of semimodular circuits is possible by splitting the detonant excitation regions into subregions with one basic state. An interesting topic is a generalization of the identification technique for the specification languages of a higher level. The maximal parallelism strategy can be applied for an automatic compensation of speed-dependency in the asynchronous circuits. Methods of performance analysis of asynchronous circuits can be developed on the basis of the theory described here.
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Appendix:
A1: Proof of Property 4.3. 1. Let U~ be an arbitrary C-state. If U~ is a basic state for some signal transition a then the statement of the Property is trivial (U~=B(a)). If U~ is a dominant state of some signal transition, the statement is also valid by Property 4.2. Only the case, where U~ is an "ordinary" state (neither dominant nor basic), remains to be discussed.

2. Since U~ is reachable, it is also stepwise reachable [2]. Therefore, there exists a feasible sequence of adjacent C-states of the type: s = U0~,U1~,U2~,...,Uk-1~,U~.

Let us denote a signal transition between C-states Uj-1~ and Uj~ as aj. Then the feasible sequence s can be represented as:

s=U0~-a1->U1~-a2->U2~-...-ak-1->Uk-1~-ak->U~, where the arcs are "loaded" with the names of the signal transitions.

3. Each transition a1,a2,...,ak in the distributive circuit has a corresponding unique basic C-state B(a1),B(a2),...,B(ak).

Since state U~ differs from Uk-1~ only in one digit corresponding to the signal transition ak, we know that U~ = Uk-1~  B(ak), where  denotes the bitwise maximum operation over vectors. A similar reasoning for Uk-1~ will show that 

U~ = Uk-2~  B(ak-1)  B(ak). Further expansion of this formula will give us 

U~=eq \A( ,1jk)B(aj),                                                                         (A.1)

i.e. U~ is obtained by the bitwise maximum operation over the basic states. (In expression (A.1) we have to take into account that U0~  is a zero-vector.)

4. If in a feasible sequence s transition ai occurs before aj then  either ai=>aj or ai//aj (but aj => ai is impossible).

5. For each transition ai (i=1,...,k-1), starting with the first one (a1), we can check whether there is another transition with a higher serial number (j>i) and such that B(ai)<B(aj). Recall that due to Property 4.1 it is possible only if ai => aj.

In such a case state B(ai) can be excluded from (A.1) as it has no influence on maximum value. Let us in this way exclude all the redundant basic states. Obviously, the result of this operation is independent of the order in which various states are excluded.

Now from the set of all transitions {a1,...,ak} there remains only a subset A such that U~=B(A), and for each pair of transitions ai,ajA their basic C-states B(ai) and B(aj) are incomparable. Note that as U~ is not basic by the assumption, set A necessarily contains more than one transition.

Thus, we have succeeded in representing U~ by the bitwise maximum operation over the incomparable basic states, and for a fixed feasible sequence s this representation is unique.

6. Assume that p is another feasible sequence of adjacent C-States that leads from U0~ into U~. For semimodular (and hence distributive) circuits the length and even the sets of transitions of all such sequences are known to coincide.

Therefore, for the sequence p we obtain the same set of changes {a1,...,ak} that characterizes s. Since the events of these sequences may change their order only if they are concurrent (Property 3.1) and each signal transition in a distributive circuit has only one basic state, after applying to p the same procedure of steps 3 and 5 of this proof we shall obtain the same set of signal transitions A as for a sequence s.                      
A2: Proof of Proposition 5.1. Necessity: Assume aSk and A is a set of all the immediate predecessors of a. We are to prove that conditions 1-3 are met.

1. It is obvious that A is an active set of the (k-1)-th tier for zi. Really, by Property 3.2, a joint concurrency of transitions from A is valid. The reachability depth h(A)=(k-1), as otherwise event a would have occurred earlier in one of the tiers S1-Sk-1. Finally, among the immediate predecessors of any transition we can have only the transitions of signals that influence function fi. Therefore, all the elements associated with the events from A belong to D(zi).

2. Since, by Property 4.2, B(A) coincides with the dominant state M(a), zi is excited in B(A).

3. Assume that another set of transitions A1, such that B(A1)<B(A) and B(A1)ER(a), does exist. Then the state B(A) cannot be dominant for the excitation region ER(a). We can remove from A all the transitions, which belong to the set difference A\A1. Therefore, the assumption of A being a set of all the immediate predecessors of a is false. A contradiction.

Sufficiency: Assume that conditions 1-3 are met and SSk is a distributive signal segment. Let us prove that aSk and A is the set of all the immediate predecessors of a.

1. Since the element zi is excited in the basic C-state B(A), B(A) belongs to some excitation region of zi. This excitation region corresponds to some signal transition of zi. We shall denote this transition as a. Thus, B(A)ER(a).

2. We are to prove now that a minimality of B(A) implies B(A) to be a dominant state of ER(a).

Let a set of transitions A'={b1,...,bl} be chosen such that B(A')=M(a). By Property 4.3 the set should be unique.

a) Since B(A) is minimal, the basic state B(A') can not be less than B(A).

b) If B(A') and B(A) are not comparable and B(A')ER(a), then the excitation region ER(a) is detonant. This contradicts the distributivity of the signal segment SSk.

Therefore, B(A)=M(a).

3. Since there is only one way to decompose any state by incomparable base states in the distributive lattice, and since A has the minimal base state among all the sets corresponding to ER(a) states, A is the set of all the immediate predecessors of event a. Moreover, aSk owing to h(A)=k-1 and one-to-one correspondence between the depth of changes and their base states in distributive segment. This completes the proof of the proposition.

3. Since an expansion of any state in incomparable basic states is unique in a distributive structure (Property 4.3) and A has the minimal basic states among all the other sets that correspond to the states of excitation region ER(a), A is indeed the set of all the immediate predecessors of a. Moreover, since h(A)=k-1, aSk. 

This completes the proof of the main Proposition.                                                
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