IEICE TRANS. INF. & SYST., VOL. , NO.

1

PAPER

Implementation of Quasi Delay-Insensitive Boolean Function Blocks

Mart Saarepera*, Nonmember and Tomohiro Yoneda*, Member

SUMMARY The problem of self-timed implementation of Boolean functions is explained. The notions of combinational delay-insensitive code and delay-insensitive function are defined, giving precise conditions under which memoryless self-timed implementation of Boolean functions is feasible. Examples of combinational delay-insensitive code and delay-insensitive function are given. Generic design style, using standard CAD library, for constructing quasi delay-insensitive self-timed function blocks is suggested. Our design style is compared to other self-timed function block design styles.

key words: Boolean function, function block, self-timed design, Four-Phase signaling, delay-insensitive code, combinational delay-insensitive code, delay-insensitive function, quasidelay-insensitive circuit, Three-Rail code, Three-Rail function.

1. Introduction

Construction of circuits which implement computable functions is an important issue in computer development. Such circuits are called function blocks. The problem of function block construction can be reduced to a problem of Boolean function block construction as every computable function can be constructed from Boolean functions. 
A Boolean function block has binary valued inputs and outputs and it interacts with its environment. A change of input values of a function block depends on an environment but a change of output values depends on a change of input values only. For input values in the end of a change of input values there are unique output values in the end of a change of output values. A set of all such pairs of input and output values, called computations, corresponds to a Boolean function which is assigned to a function block. The purpose of a function block is to participate in iterative computations which are controlled by environment. A problem is that a duration of change of output values depends on a delay function which is assigned to a function block. A duration of change of output values can not be controlled by environment which can control a change of input values only. For proper iterative computations, a new change of input values must not be started before a previous change of input and output values has been completed. How can environment know that a change of output values has been completed?
*The authors are with the Department of Computer Science, Tokyo Institute of Technology, Tokyo 152, Japan.
There are two known design approaches, synchronous and asynchronous, to solve the above problem. Synchronous design approach is based on a requirement that an environment has a clock with a bigger tick duration than any value of a delay function of a function block. Asynchronous design approach is based on a requirement that a duration of change of output values is always bigger than a duration of change of input and internal values, every iteration of computations involves a change of output values, and environment can observe output values of a function block. This requirement is achieved by applying some scheme which controls the values of a function block.

In this work we focus on a specific scheme of asynchronous design approach known as Four-Phase signaling [1]. The values of a function block are coded and a special spacer value is used to guarantee a change of output values in every iteration of computations. A function block which satisfies the requirements of the Four-Phase signaling is called a self-timed function block. If a solution to the requirement, a duration of change of output values of a function block is always bigger than a duration of change of input values, is independent of a delay function then a self-timed function block is called a delay-insensitive function block. Unfortunately, it is impossible to construct delay-insensitive function blocks for all Boolean functions [3]. If a solution to the above requirement depends on equality of some delays of a circuit (usually within a tiny area) which implements a function block then a self-timed function block is called a quasi delay-insensitive (QDI) function block [4]. In QDI function blocks, we can assume that all the branches of a forking wire have the same signal propagation properties (delays), which is sometimes called isochronic fork assumption. This assumption is adequate if the delays of branches are negligible when all the branches are within small region.

Four-Phase signaling based function block design has been discussed in [1], [3], [5], [6], [7], [11], [12], [13], [14], [15], etc. Almost all previously suggested self-timed function block design styles require memory devices in function blocks. Speed of correct functioning of such function blocks depends on implementation technology but also on the speed of the environment because of the environment has to wait until feedback wires in memory devices become stable. Specialized CAD tools for design, verification, and testing are required in most cases. Also, verification [16] and testing of most such function blocks are more difficult than function blocks without memory devices, mainly because using memory devices makes the state space of the function block larger. Furthermore, standard CAD libraries do not contain C-elements which are the most widely used memory devices in these design styles.

The motivation of our work is to develop a time robust design in a sense that function blocks behave correctly under least number of delay assumptions. In this paper, we discuss QDI Boolean function blocks, called combinational self-timed function blocks, which do not contain memory devices in their implementation. Speed of correct functioning of such devices depends on implementation technology only. Combinational selftimed function block design and verification is simple compared to self-timed function blocks which contain memory. Standard CAD tools and standard libraries can be used. Combinational self-timed function blocks may also be faster than self-timed function blocks which contain memory, because of no internal feedback. Combinational self-timed function blocks were predicted in [5]. Four value NULL Convention LogicTM system [5] is minimal logic, which allows combinational self-timed function blocks in principle but not in reality.

The rest of the paper is organized as follows. The problem of self-timed function block design is explained in Section 2. We describe some previous works in the field by presenting two design styles which are representatives of different approaches to Four-Phase self-timed function blocks. In Section 3 we present theoretical considerations of our Four-Phase QDI function block design approach. We characterize a new class of Four-Phase QDI function blocks: combinational self-timed function blocks. In Section 4 we present a generic design style for Three-Rail combinational self-timed function blocks. In Section 5 we analyze how suitable our design style is and discuss some of its properties. Finally we summarize the discussion.

2. Preliminaries

Our model of Four-Phase signaling function block and its environment consists of the following devices: function block, sender, receiver, completion detection circuit, and input, output, and acknowledgment channels. We do not go into details of sender and receiver devices and acknowledgment channel construction, but consider only some of their functions. The model of a Four-Phase signaling function block is illustrated in Fig. 1

Fig. 1 Function block and its environment

2.1 Channel

We assume that a channel is constructed of wires, which have two stable states. To make the explanation of channel construction in self-timed function block design FUNCTION easier to understand we consider one more abstraction layer between channel and wire. We assume that a channel is constructed of connections and that a connection is constructed of wires. Size of a connection cn is the number of wires in the connection, denoted by z(cn). A wire has two different stable states denoted by 0 and 1. A wire state space is denoted by B = {0, 1}. A wire has two different state transitions: a change of states is denoted by __1__ and no change of states is denoted by __0__. A wire state transition space is denoted by T = {0, 1}. Connections are used to communicate multi-valued symbols, called connection symbols. Every wire in a connection is allowed to have at most one state transition in the process of one connection symbol communication. A connection cn may be used to communicate Tm − 1 different connection symbol, where m = z(cn). A transition code of a connection cn is a tuple (m,C, c), where m = z(cn) is a connection size, C is a set of connection symbols, and c : C → Tm is an assignment of connection symbols to separate transitions different from empty transition < 01, ..., 0m >. A transition x in the transition space Tm is a binary tuple. Applying a transition x ∈ Tm to a state s ∈ Bm gives a new state x(s). We use the notation s x→ x(s) to denote a state transition from a state s to a state x(s) by a state transition x. Applying the same transition x ∈ Tm twice to a state s ∈ Bm gives the same state, x(x(s)) = s. Applying two different transitions x, y ∈ Tm and x _= y to a state s ∈ Bm gives a state which is different from s, x(y(s)) _= s.

Four-Phase signaling scheme explained below controls the states of connections instead of transitions. An observation that communicating the same connection symbol twice in binary wired connection takes a connection state back to its initial state is the basis for Four-Phase signaling.

A state code corresponding to a transition code (m,C, c) of a connection cn is a tuple (m, Q,W), where m = z(cn) is the channel size, Q is a spacer state chosen from the connection state space Bm, and W = {y|∃x.x ∈ C, y = c(x)(Q)} is a set of code states derived from the spacer state Q by applying transitions corresponding to connection symbols to it. Applying separate transitions to a state results in separate states. For each transition code of a connection cn there are Bm state codes of the connection, where m = z(cn), as there are Bm different choices for a spacer state.

A channel Ch = (cn1, ..., cnl) composed of connections cn has a state space BmЧl, where m = z(cn). Suppose that a state code of connections cn is fixed. We say that a channel state is a spacer-word if all the connection states are spacer-states. We say that a channel state is a code-word if all the connection states are codestates. We say that a channel state is an intermediateword if it is neither a spacer-word nor a code-word.

2.2 Function Block

A function block has n >= 1 inputs and k >= 1 outputs compatible to connections. Suppose that a function block implements a function F : BmЧn → BmЧk, where m = z(cn) is the connection size. Given a state code (m, Q,W) corresponding to a transition code (m,C, c) of a connection cn such that C includes two connection symbols 0 and 1, we say that F is an extension of a Boolean function f : Bn → Bk, if ∀x.x ∈ Bn ⇒ F(cn(x)(Qn)) = ck(f(x))(Qk) holds.

2.3 Four-Phase Signaling

Definition of Four-Phase signaling is given in [1]. This definition gives an intended behavior of a function block in terms of input and output channel state sequences. These sequences are characterized by statements, called “weak conditions” [1], giving temporal relations between input and output channel state changes. A condition, except condition (0), is a sentence (a) << (b), where (a) is an input channel state transition and (b) is an output channel state transition, and << is a temporal relation between the transitions stating that (a) can not be completed after (b). The “weak conditions” are stated as follows:

(0) Input and output channel states are spacer-words;

(1) Input channel state becomes an intermediateword << output channel state becomes an intermediate-word;

(2) Input channel state becomes a stable code-word << output channel state becomes a stable codeword without reaching non-stable code-words;

(3) Input channel state becomes an intermediateword << output channel state becomes an intermediate-word;

(4) Input channel state becomes a stable spacer-word << output channel state becomes a stable spacerword without reaching non-stable spacer-words.

There is also a temporal relation between the conditions. A condition (n) must hold before a condition (n+1) holds, where 0 <= n < 4, and condition (4) must hold before the condition (1) holds.

Condition (0) is an assignment of initial states to the input and output channels. First phase of the Four-Phase signaling is characterized by the conditions (1) and (2). The condition (1) states the relation of input and output channel states after the beginning of a change of input channel states. The condition (2) states the relation of input and output channel states in the end of the change of input channel states. In the end of the first phase the states of input and output channels are stable code-words. The last change in input and output channels before they become stable occurs in output channel. Before this change, the output channel state must not be a code-word. Completion detection device, recognizing code-words, is acknowledging the sender device about the end of the first phase of signaling. This constitutes the second phase of Four-Phase signaling. Third phase of the Four-Phase signaling is characterized by the conditions (3) and (4). In the end of the third phase the states of input and output channels are stable spacer-words. The last change in input and output channels before they become stable occurs in output channels as in the first phase of the signaling. Before this change the output channel state must not be a spacer-word. Completion detection device, recognizing spacer-word, is acknowledging the sender device about the end of the third phase of signaling. This constitutes the fourth phase of Four-Phase signaling bringing the system back to the initial state.

A function block is Four-Phase self-timed or selftimed under Four-Phase signaling, if its input and output state sequences are from the class of input and output state sequences specified by Four-Phase signaling under some gate and wire delay model. In this paper we are interested in constructing function blocks which are QDI under Four-Phase signaling.

It is known that a composition of Four-Phase selftimed function blocks is also a Four-Phase self-timed function block [1].

2.4 Delay-Insensitive Code

Delay-insensitive data communication problem is a particular case of Four-Phase delay-insensitive function block design problem as mentioned above. In this case, the function blocks are restricted to have the same number of inputs and outputs and they are supposed to implement identity functions.

Delay-insensitive data communication problem is known to have a solution involving binary wired connections assuming arbitrary but finite delays in wires and function blocks. An overview of codes for delayinsensitive data communication problem can be found in [2]. Such codes are called delay-insensitive codes.

Ordering <= of transitions x ∈ T in a wire is defined as a set of ordered pairs {< 0, 0 >,< 0, 1 >,< 1, 1 >}. Ordering of transitions x, y ∈ Tm in a connection cn, where m = z(cn), is defined pointwise, x <= y =< x1 <= 4 y1, ..., xm <= ym >. Two transitions are independent if they are not comparable to each other relative to the ordering <= . A transition code (m,C, c) is delayinsensitive if its coded transitions are independent:

∀x, y.x ∈ C, y ∈ C, c(x) <= c(y) ⇒ c(x) = c(y). 

A state code derived from a delay-insensitive transition code is called a delay-insensitive state code. A code which is a product of two delay-insensitive codes is also a delay-insensitive code [2].

An example of delay-insensitive codes is One-Hot code of length two, which is defined as (2, {0, 1}, {< 0, 01 >,< 1, 10 >}). Usually only one of its state codes (2, 00, {01, 10}) is used. The spacer-word is a state 00 and the code-words which represent the symbols 0 and 1 are states 01 and 10. A popular Dual-Rail code is constructed from One-Hot code of length two the product operation. The spacer-word is the tuple of spacer-words of the One-Hot code and the code-words are tuples of code-words of the One-Hot code.

3. Self-Timed Function Blocks with Memory

In this section, we describe two different Four-Phase signaling function block design styles which require memory in function blocks. The requirement of asynchronous design that a duration of change of output values is bigger than a duration of change of input and internal values is replaced in these design styles by a similar but stronger requirement that a change of output values does not start before a change of input and internal values has been completed. We evaluate the different design styles and argue that it is difficult to verify such devices as their correctness depends on the delays of environment.

3.1 Self-Timed Function Block Construction - DIMS

In this subsection, we describe a technique for Four-Phase QDI function block implementation. The technique, now called Delay-Insensitive Min-term Synthesis - DIMS, was previously presented and used in [8], [9], and [10]. Four-Phase QDI function block is modeled as an asynchronous state machine. Memory devices in DIMS style function blocks are Muller C-elements.

DIMS uses Dual-Rail code in channel coding. A DIMS function block consists of two arrays of gates, an input C-array and an output OR-array. In the input C-array all the min-terms are generated from the input variables. Each min-term is implemented with a C-element such that only after all input connection states have changed from a spacer state to a code state (or vice versa), is one C-element activated. The output functions are implemented in the OR-array by grouping together the min-terms to form the true and false parts of each function.

The purpose of the array of C-elements is to point out the correct min-term and to indicate signal transitions for all input variables. It is therefore not possible to reduce the function and let one or more C-elements cover several min-terms. As only one C-element becomes active, the corresponding signal change is automatically indicated through an OR-gate on the output. The requirement that a duration of change of output values of a DIMS function block is always bigger than the duration of change of input values is satisfied if the forking inputs in an input array are isochronic.

A DIMS function block implementing a multiplying half-adder is illustrated in Fig.2. An half-adder takes three variables, a, b, and c, as inputs and produce two outputs, sum and carry given by:

sum = a · b · c + (a + b) · c,

carry = a · b · c.

Fig. 2 Dual-Rail DIMS multiplying half adder

A function block with three input variables has eight min-terms. A TRUE part of the carry function is pointed out by one min-term and need not be grouped. A FALSE part of the carry function is pointed out by seven min-terms which are grouped by an OR gate. TRUE and FALSE parts of the sum function are both pointed out by four min-terms which are grouped by OR gates correspondingly.

DIMS style is generic as we can add any number of inputs or outputs to the design. Adding one input to a DIMS function block causes the C-element array to grow twice as the number of min-terms grows twice. Adding one more output means adding one additional OR-array in parallel to existing OR-arrays. 

3.2 Self-Timed Function Block Construction – DRCL In this subsection, we describe a technique for Four-Phase QDI function block implementation which also models a function block as an asynchronous state machine, but separates the function and its synchronization. The technique, called Dual-Rail Combinational Logic - DRCL, has been designed and used in [7], [11], [12], [13].

DRCL uses Dual-Rail code in channel coding. DRCL style function block consists of two parts: function block and additional environment. Function block consists of two combinational blocks implementing the true and false parts of the function. Function blocks implementing Boolean AND and OR functions are particularly simple consisting of a pair of binary AND and OR gates. True and false part of the function are binary Boolean functions and can be implemented using standard CAD tools.

The additional environment is generic and designed independently from the Dual-Rail function block. The idea of the additional environment is to add completion detection circuitry to input and internal channels and use completion detection signals to control the state of output channel. Several different developments have been presented to minimize the size of completion detection circuits in the additional environment and improve its speed. The problem with DRCL design style is that additional environments tend to be much bigger than Dual-Rail function blocks themselves. If the environment gets big and has several feedbacks in it then it is also difficult to verify if it is Four-Phase QDI or not [16].

A DRCL multiplying half adder is illustrated in Fig.3. The Dual-Rail sum and carry functions are implemented by Boolean AND and OR gates. The additional environment is separated from the function part by the dotted line. Binary OR gates are used of detection of completion of signal transitions in the first and third phase of the Four-Phase signaling. C-elements in the outputs of TRUE and FALSE parts of the function block are controlled by the completion detection signal of the additional environment generated by another C-element. The circuit satisfies Four-Phase signaling if all its forks are isochronic.

Fig. 3 DRCL multiplying half adder

3.3 Implementation Analysis

Design of DIMS and DRCL style function blocks require CAD which has a library of C-elements. DIMS style function blocks are easy to design as min-term arrays can be reused for different functions with the same number of arguments. Correctness of functioning of DIMS style function blocks depends on delays of forking wires and delays of internal feedback wires of Celements. The forks in the first array of a DIMS style function block must be isochronic, i.e. signal propagation in all of the branches of a forking wire must be equal. This requirement is generally achieved by requiring that forking branches have equal length. A delay of internal feedback wire of a C-element must be smaller than a combined delay of completion detection circuit, acknowledgment channel, and a sender device. This requirement depends on environment and sets a speed limit for function blocks which require memory.

Function part of a DRCL style function block corresponds directly to the terms of a function of a function block and it does not contain memory. Synchronization part of a DRCL style function block contains memory, i.e. its correct functioning depends also on a delay of an environment. All the forking wires in DRCL style function blocks must be isochronic. Verification of DRCL style function blocks is generally difficult as the synchronization part of a function block may contain

many feedback wires [16].

4. Combinational Self-Timed Function Blocks

In this section we lay out theoretical considerations of combinational self-timed function block design. The requirement of asynchronous design that a duration of change of output values is bigger than the duration of change of input and internal values is achieved by requiring that a value of every intermediate-word argument of a function of a function block has an intermediate-word value. In this case, a duration of change of output values is equal to a duration of change of input and internal values if the delays in the function block are zero and a duration of change of output values is bigger than a duration of change of input and internal values if the delays in the function block are bigger than zero. We define proper codes for combinational self-timed function blocks, called combinational delay-insensitive codes, by using slightly different definition from that in [2]. We define an extension of Boolean functions called delay-insensitive functions based on combinational delay-insensitive codes. We show that combinational delay-insensitive coded function blocks implementing delay-insensitive functions are Four-Phase QDI.
4.1 Combinational Delay-Insensitive Code

The reason why existing self-timed function block design styles, except [14], use memory gates is related to Dual-Rail code which they use in channel coding. Hamming distance between a spacer state and code states in state codes of One-Hot code of length two is one. This implies that there are no stable states in a connection in the first and third phases of Four-Phase signaling which are different from spacer or code states. Consider a Boolean function f : Bm → B, where m > 1, and let F : B2Чm → B2 be its Dual-Rail extension. In the first phase of Four-Phase signaling the state of input channel changes from the spacer-word to a codeword and the same kind of change of states has to take place in output channel. Because the input channel consists of more than one connection there are some stable intermediate-words observable in it during the first and third phases of Four-Phase signaling. Let M denote this set of intermediate-words of input channel. If we hope to construct function blocks from combinational gates only, then there should be some output channel states corresponding to those intermediateword input channel states. The choice we have is either the spacer state or a code state. Suppose we choose the spacer state as output channel state corresponding to intermediate-word input channel states. That is, ∀x.x ∈ M ⇒ F(x) = (00). Then, the first phase of Four-Phase signaling is satisfied, but in its third phase the output channel state becomes the spacer-word when the input channel state becomes an intermediate-word. This violates the condition (4) of Four-Phase signaling. If we choose a code state as output channel state corresponding to intermediate-word input channel state, that is, ∀x.x ∈ M ⇒ F(x) ∈ {(01), (10)} then in the first phase of Four-Phase signaling the output channel state becomes a code-word when the input channel state becomes in intermediate-word. This violates the condition (2) of Four-Phase signaling. Hence, it is impossible to implement more than one argument one value Boolean functions as Four-Phase QDI function blocks without the use of memory gates.

Some multi output Boolean functions may be implementable as Dual-Rail Four-Phase QDI function blocks by carefully choosing intermediate-words in output channel. However, a general solution may involve increased number of output connections. Our goal is to implement self-timed function blocks without using memory gates. We take a slightly different approach in channel coding. We assume that spacer is also a connection symbol and needs to be coded.

We consider transition codes of a connection cn, (m, {0, 1, S}, c), where m = z(cn) is the size of the connection and c is an assignment of connection symbols to transition vectors different from the empty transition. We call such codes combinational transition codes.

Given a combinational transition code for a connection cn, (m, {0, 1, S}, c), a combinational state code is defined as a tuple (m, Y, Q,W), where m = z(cn) is the size of the connection, Y is an intermediate state chosen from the state space Bm, Q = c(S)(Y ) is the spacer state, W = {c(0)(Y ), c(1)(Y )} is the set of code states. State transitions from code states (c(0)(Y ) for example) to the spacer state, c(0)(Y ) x→ c(S)(Y ), can be decomposed to state transitions from the code states to the intermediate state, c(0)(Y ) c(0) → Y , and a state transition from the intermediate state to the spacer state Y c(S) → c(S)(Y ), as c(0)(Y ) c(s)c(0) → c(S)(Y ) and c(S) _= c(0) by the definition of combinational state code. In the same way, state transitions from the spacer state to code states can be decomposed to state transitions from the spacer state to the intermediate state and state transitions from the intermediate state to the code states. In all the considered state transitions the intermediate state Y can be reached. A combinational transition code of a connection cn has as many combinational state codes corresponding to it as there are states in the state space Bm, where m = z(cn). We say that a combinational state code is delay-insensitive if the combinational transition code used in its derivation is delay-insensitive. 

4.2 Delay-Insensitive Function

Given a combinational delay-insensitive state code of a connection cn, (m, Y, Q,W), M denotes the set of intermediate-words of a channel. We define a delayinsensitive function F : BmЧn → BmЧk, where 1 <= n and 1 <= k, as follows:

(a) ∀x.x = Qn ⇒ F(x) = Qk,

(b) ∀x.x ∈ Wn ⇒ F(x) ∈ Wk,

(c) ∀x.x ∈ M ⇒ F(x) = Y k.

The spacer-word argument has the spacer-word value. A code-word argument has a code-word value depending on a Boolean function it extends. All the intermediate-word arguments get the value Y k. Later we will relax this condition a little, as it is not necessary to assign a definite value to all the intermediateword arguments, as they never occur in working function blocks. Some other value instead of Y k may be preferable from implementation point of view.

Theorem 1: Function block implementing a delayinsensitive function assuming a combinational delayinsensitive code is QDI under Four-Phase protocol

(Proof ): We assume arbitrary but finite delays in a function block and in input and output channels. If the sender device sets the state of input channel to the spacer-word, then after some time the output channel state will become the spacer-word, because of the statement (a) of the definition of the delay-insensitive functions. This satisfies the condition (0) of the Four-Phase signaling. Spacer state is recognized by completion detection device, which sends an acknowledgment signal to the sender device after some finite time interval. Sender device initiates a change of input channel state to a code-word state. Function block is reacting to the change of input channel state by changing the output channel state according to its function table, statement (b) of the definition of the delay-insensitive functions, to the value Y k, which is an intermediate-word not recognizable by completion detection device. This satisfies the condition (1) of the Four-Phase signaling. Sender device is completing the change of input channel state to a code-word after some time interval. Function block is reacting to the change of input channel state to the code-word by changing the output channel state to a code-word according to the statement (c) of the definition of the delay-insensitive functions. This change can take place not before the input channel state has changed to the code-word. During a change in the output channel from an intermediate-word to a code-word several intermediate-words may be observable. It is not possible to observe any code-words other than the codeword corresponding to the function table of a function block, because of independence of different transitions from intermediate words to code-words, which follows from the definition of delay-insensitive transition code. After the output channel state has changed to the codeword the system state becomes stable. This satisfies the condition (2) of the Four-Phase signaling. 

Completion detection device recognizes the codeword state in output channel and sends an acknowledgment signal to the sender device after some finite time interval. This initiates a change of input channel state from the code-word to the spacer-word by the sender device. Function block is reacting to the change of input channel state by changing the output channel state according to its function table to the value Y k, which is the intermediate-word. It is not possible that some other code-word, different from the initial code-word, may be observable in the output state during this change, because of the independence of transitions from code-words to the intermediate-word Y k, which follows from the definition of delay-insensitive transition code. This satisfies the condition (3) of the Four-Phase signaling. Sender device is completing the change of input channel state to the spacer-word after some time interval. Function block is reacting to the change of input channel state to the spacer-word by changing the output channel state to the spacer-word according to its function table. This change can take place not before the input channel state has changed to the spacer-word. After the output channel state has changed to the spacer-word the system state becomes stable. This satisfies the condition (4) of the Four-Phase signaling. After the acknowledgment signal the signaling cycle starts again.
5. Three-Rail Function Block Design Style

In this section we present a generic combinational selftimed function block design style. The requirement of asynchronous design that a duration of change of output signal is bigger than a duration of change of input and internal signals is achieved by a definition of a combinational code and delay-insensitive functions. We define a Three-Rail code and a state codes based on it. The Three-Rail code is a combinational code. It is minimal in a sense that the number of wires in a connection of a binary combinational code can not be reduced. We define delay-insensitive functions based on Three-Rail code. This is followed by explanation of Three-Rail combinational self-timed function block design. Our implementation is in terms of binary Boolean gates. Finally we explain construction of completion detection circuitry for Three-Rail code.

5.1 Three-Rail Code

We define a One-Hot transition code of length three as a tuple (3, {0, 1, S, }, {< 0, 001 >,< 1, 100 >,< S, 010 > }), where 001 and 100 correspond to the Boolean symbols 0 and 1 respectively, and 010 corresponds to the spacer symbol S. Three-Rail transition code is defined as n-time product of One-Hot code of length three. The One-Hot code is a combinational transition code. We derive a One-Hot state code from the One-Hot transition code of length three defined above by choosing a fixed intermediate state to be Y = 010. Our state code is a tuple (3, 010, 000, {011, 110}), where states 011 and 110 correspond to Boolean symbols 0 and 1 and state 000 corresponds to the spacer symbol S. This code is illustrated in Fig.4, which shows a lattice graph of binary triples of length three with natural ordering. Nodes in the graph correspond to the connection states and an arc between the nodes means that the node below has strictly smaller value than the node above in the sense of natural ordering. The state marked by a big black node corresponds to the spacer symbol S. The states marked by big nodes with a small black dot correspond to the Boolean symbols 0 and 1. The rest of the nodes are intermediate states. Intermediate states marked by a transparent circle never appear in Four-Phase signaling as the state changes in connections are from the spacer state to code states and vice versa only. Intermediate state marked by a square corresponds to the distinguished intermediate state Y . Three-Rail code is constructed from the One-Hot state code by n-time concatenation. Three-Rail code is a combinational code by definition.

Fig. 4 Three-Rail state code

5.2 Three-Rail Function

A Three-Rail extended Boolean function is called a Three-Rail function. We expand the class of Three-Rail functions as some states of Three-Rail state codes never appear in Four-Phase signaling. All arguments containing these states can be valuated freely.

The Three-Rail two input AND function of the Three-Rail code is illustrated in Fig. 5. If both arguments are spacer-words then the value of the function is the spacer-word. If both arguments are code-words then the value of the function is a code-word. Some of the rest of the arguments get the specific intermediate value Y . Rows and columns not filled in the truth table correspond to the arguments which do not occur in channels during Four-Phase signaling. We give values to these arguments in the process of finding minimal terms for the output wires.

Fig. 5 Three-Rail delay-insensitive AND function

5.3 Combinational Min-Term Synthesis – CMS Three-Rail combinational self-timed function blocks were first introduced in [14]. In this section we introduce a generic design style, called Combinational Minterm Synthesis (CMS), which uses only standard gate libraries.

A connection of a CMS function block consists of three binary valued wires. A wire with index 1 of a connection X is called a spacer wire, and wires with indexes 2 and 3 are called data wires. A CMS function block of a Three-Rail function F : B3Чn → B3Чk is a circuit of binary gates which consists of three blocks. The first block is a binary gate with 3Чn inputs which are connected to the input connections of a function block. The output of the gate is connected to spacer wire outputs of the function block. Type of the gate is determined by a combinational code. In case of the Three-Rail code the first block of a CMS function block is an OR gate with 3Ч n inputs. Size of the first block depends on a number of input connections of a function block. Size of the first block grows linearly relative to the number of input connections. The second block is an array of 2n binary gates with 2 Ч n inputs which are connected to input connections of a function block. Every gate of the second block has n inputs connected to spacer wires of input connections and n inputs connected to one of the data wires of input connections of a CMS function block. Data wires are chosen so that all the 2n min-terms are covered. Type of the gates is determined by a combinational code. In case of the Three-Rail code the second block of a CMS function block consists of AND gates with 2 Ч n inputs. Size of the second block depends on a number of input connections of a function block. Size of the second block grows exponentially relative to the number of input connections. The third block is an array of binary gates which are connected to data wires of the output connections of a CMS function block. Every gate in the third block has inputs connected to the min-term gates of the second block. If a gate is connected to a data wire of output connection which corresponds to a TRUE part of a Three-Rail function then the inputs of the gate are connected to all the min-terms of the second block which correspond to the TRUE part of the Three-Rail function. If a gate is connected to a data wire of output connection which corresponds to a FALSE part of a Three-Rail function then the inputs of the gate are connected to all the min-terms of the second block which correspond to the FALSE part of the Three-Rail function. If there is only one min-term gate which corresponds to a TRUE or FALSE part of 

an output connection then the output of the min-term gate is connected directly to the data wire of the output connection. Type of the gates is determined by a combinational code. In case of the Three-Rail code the third block of a CMS function block consist of at most 2 Чk OR gates which have at most 2n −1 inputs. The number of inputs of a particular OR gate depends on a Three-Rail function. Size of the third block grows linearly relative to the number on output connections.

Delays in a Three-Rail CMS function block gates and most of the wires are assumed to have arbitrary but finite delays. All the forks of input connection wires are assumed to be isochronic. Data wires of input connections have 2n−1 + 1 forking branches, where n is the number of input connections. Spacer wires of input connections have 2n + 1 forking branches. The rest of the forking wires are not assumed to be isochronic.

Three-Rail CMS function block which implements a multiplying half-adder is illustrated in Fig. 6. The first and the second blocks of the function block are standard blocks for a function block with 3 input connections. The third block consists of three OR gates: two 4 input and one 7 input gates.

Fig. 6 Three-Rail CMS multiplying half-adder function block

5.4 Three-Rail Completion Detection Circuit 

Completion detection circuit detects code-words and the spacer-word states of output channel. An implementation of completion detection devices for Three-Rail CMS function blocks has been suggested in [14]. Here we present a minimized version of the same device.

Figure 7.a) illustrates a Three-Rail completion detection circuit in case of one output connection. Figure 7.b) illustrates a Three-Rail completion detection device of a channel which contains more than one connection. C-element in these designs is necessary if we want to have an acknowledgment channel size as minimal as possible. If our goal is to avoid C-elements in all devices except sender and receiver then we should use an acknowledgment channel constructed of a pair of binary valued wires. Memoryless completion detection devices are similar to the completion detection devices illustrated in the Fig. 7. Inputs to C-elements become the acknowledgment channel after C-elements are removed.

Fig. 7 Three-Rail code completion detection circuit:

a) one connection channel, b) multi-connection channel

6. Implementation analysis

In this section, we analyze synthesis of Three-Rail CMS style function blocks. Performance aspects of different design styles of Four-Phase QDI function block are discussed in [15]. We apply similar analysis to Three-Rail CMS style.

6.1 Synthesis

There is the one-to-one correspondence between memoryless binary gates used in synchronous design and CMS style function blocks. Thus, we can say that it is easy to construct CMS style function blocks for all the Boolean functions, because CMS style function block library can be generated automatically, and also any combinational circuit from synchronous design can be converted to Four-Phase signaling CMS style circuit automatically as well as no specific gate level minimization procedures are required. Furthermore, no special CAD tools are needed for synthesis of CMS style function blocks. Verification of circuits of CMS style function blocks is not necessary as the correctness is guaranteed by construction (see Theorem 1). The speed of the CMS style function blocks depends on implementation technology and is independent of the speed of environment. The speed of the Four-Phase signaling QDI designs which contain memory gates depends similarly on implementation technology but unlike in the CMS style it is dependent of the speed of environment [5]. Thus, compared to such QDI design styles, CMS style function blocks have the least delay restrictions, which implies that they are most reliable in practice. On transistor level the choice of a Three-Rail state code is important as the number of transistors in a gate depends on a function of a gate and gate types in CMS style design depend on code.

6.2 Area

We consider two implementation levels for function blocks: gate level and CMOS transistor level. For the gate level implementations, we consider simple gates such as (N)AND, (N)OR, and INVERTER as basic elements.

Implementation size of a CMS style function block depends on the number of inputs and outputs. Like in DIMS style, we can obtain exact numbers for the gate and transistor counts. We use the transistor count as a measure of area. The transistor counts for simple m-input gates in CMOS (inverters, NAND-, and NORgates) are 2m transistors. Hence, an inverter requires 2 transistors, and 3-input NOR-gate 6 transistors. A non-inverting gate consists of an inverting gate followed by an inverter, e.g., OR3 = NOR3 + 2 = 8 transistors.

CMS function blocks consist of three arrays of gates. In case of Three-Rail code, we can slightly simplify the construction. Similar to DIMS style function blocks, it is not possible to reduce the function and let one or more AND-gates cover several min-terms. However, we can rewrite the terms using DeMorgan’s law to a different form to get better performance in implementations. Instead of AND-OR-arrays we can use NAND-NAND–arrays. The CMOS implementations of the later are smaller in size compared to the CMOS implementations which are using AND-OR-arrays as NAND gates have simpler transistor implementations than AND gates.

The complexity of an implementation of CMS style in case of Three-Rail code is: 2n AND(NAND) gates with 2 Ч n inputs, 2 Чk OR(NAND) gates with 2n−1 inputs, and an OR gate with 3 Ч n inputs:

2nAND2n +2kOR2n−1 + OR3n,

2nNAND2n +2kNAND2n−1 + OR3n,

where n and k denote the number of input and output variables, respectively. Note, that the fan-in to the OR(NAND)-gates is the average fan-in, as the actual distribution of min-terms within each pair of OR(NAND)-gates depends on the specific function.

It is noted that the complexity is exponential in the number of inputs and linear in the number of outputs. The transistor count for a range of input-output combinations are summarized in Table 1. Columns I correspond to AND-OR-arrays of gates and columns II correspond to NAND-NAND-arrays of gates. Transistor counts of column 0 are sums of transistors in the first and second blocks.

The corresponding transistor counts for Dual-Rail DIMS style are summarized in Table 2. We can see from Table 1 and 2 that transistor counts for both styles are comparable. Area of a function block is also dependent on the number of wires in a connection. Since DIMS style function blocks have two wires per connection which is one less than CMS style function blocks, CMS style needs larger area. However, we consider that the difference is not so large.

inputs outputs

0 1 2 3

I II I II I II I II

2 54 46 +12 = 66 +8 = 54 +24 = 78 +16 = 62 +36 = 90 +24 = 70

3 134 116 +20 = 154 +16 = 132 +40 = 174 +32 = 148 +60 = 194 +48 = 164

4 254 222 +36 = 290 +32 = 254 +72 = 326 +64 = 286 +108 = 362 +96 = 318

Table 1 Transistor counts of CMS function blocks.

inputs outputs

0 1 2 3

2 32 +12 = 44 +24 = 56 +36 = 68

3 80 +20 = 100 +40 = 120 +60 = 140

4 192 +36 = 228 +72 = 264 +108 = 300

Table 2 Transistor counts of DIMS function blocks.

7. Conclusion

In this paper, we have discussed implementation of memoryless Four-Phase QDI Boolean function blocks. We have demonstrated that combinational delayinsensitive codes and delay-insensitive extension of Boolean functions constitute to necessary conditions under which function blocks are Four-Phase QDI. Then, we have presented a Three-Rail code which is a combinational delay-insensitive codes. We have also presented Three-Rail extensions of Boolean functions based on the Three-Rail code. In order to give the actual implementation of Three-Rail functions, we have presented a generic Three-Rail Four-Phase combinational self-timed function block design style called Combinational Min-term Synthesis, and constructed completion detection devices for Three-Rail codes. CMS style Four-Phase function blocks are unique in a sense that their speed of correct functioning depends on implementation technologies and it does not depend on the speed of environment functioning contrary to the DIMS and DRLS function blocks which speed of correct functioning depends on environment functioning speed. Finally, we have analyzed implementation issues concerning CMS design style and compared the function blocks with several design styles which assume memory in function blocks.

References

[1] C. L. Seitz, “System Timing,” In: C.A.Mead, L.A.Conway, Introduction to VLSI systems, Addison-Wesley, Reading

MA, pages 218-262, 1980.

[2] T. Verhoeff, “Delay-insensitive codes - an overview,” Distributed Computing, 3:1-8, 1988.

[3] A. J. Martin, “The Limitations to Delay-Insensitivity in Asynchronous Circuits,” Proc. of the Sixth MIT Conference on Advanced Research in VLSI, W.J.Dally, ed., MIT Press, 1990.

[4] A. J. Martin, “Programming in VLSI: From communicating processes to delay-insensitive circuits”, in UT Year of Programming Institute on Concurrent Programming, C.A.R.Hoare, Ed. Reading, MA:Addison-Wesley, 1989, pp. 1-64.

[5] K.M.Frant, S.A.Brandt, “NULL Convention LogicTM System”, US patent 5,305,463, Aplir 19,1994.
[6] J. A. Brzozowski and J. C. Ebergen, “On the Delay-Sensitivity of Gate Networks,” IEEE Trans. on Computers, Vol. 41 (No. 11):1349-1360, 1992.

[7] I. David, R. Ginosar and M. Yoeli, “An Efficient Implementation of Boolean Functions as Self-Timed Circuits,” IEEE Trans. on Computers, Vol. 41 (No.1):2-11 ,1992.

[8] D.E.Muller, “Asynchronous Logics and Application to Information Processing”. In Symposium on the Application

of Switching Theory to Space Technology, pages 289-297. Stanford University Press, 1962.

[9] C.D.Nielsen, J.Staunstrup, S.Jones, “A Delay-insensitive neural network engine”. In Will R. Moore, editor, Proceedings of the Workshop on VLSI for Neural Networks, pages 367-376, September 1990.

[10] J.Sparso, J.Staunstrup, “Delay-insensitive multi-ring structures”. INTEGRATION, the VLSI Journal, 15(3):313-340, 1993.

[11] T. Nanya and M. Kuwako, “On Signal Transition Causality for Self-Timed Implementation of Boolean Functions,” Workshop on Asynchronous and Self-timed Circuits and Systems at HICSS-26, pages 356-368, 1993.

[12] D. B. Armstrong, A. D. Friedman and P. R. Menon, “Design of Asynchronous Circuits Assuming Unbounded Gate Delays,” IEEE Trans. on Computers, Vol. C-18 (No.12): 1110-1120, 1969.

[13] V. I. Varshavsky, “Self-timed Control of Concurrent Processes,” Kluwer Academic Publishers, 1990.

[14] M.Saarepera, T.Yoneda, “A Self-Timed Implementation of  Boolean Functions,” Advanced Research in Asynchronous Circuits and Systems, pages 243-250, 1999.

[15] C.D.Nielsen, “Evaluation of function block designs,” Technical Report ID-TR:1994-134, Department of Computer Science, Technical University of Denmark, January 1994.

[16] T.Yoneda, Y.Ohtsuka, M.Saarepera, “Verification of Parameterized Asynchronous Circuits: a Case Study”. Application of Concurrency to System Design, pages 64-74, 1998.

M˝art Saarepera received his B.E. degree in computer science from Tallinn Technical University, Tallinn, Estonia in 1989, and M.E. degree in computer science from Tokyo Institute of Technology, Tokyo, Japan, in 1996. His research interests

include fomal verification and asynchronous design .

Tomohiro YONEDA received B.E., M.E., and Dr. Eng. degrees in Computer Science from the Tokyo Institute of Technology, Tokyo, Japan in 1980, 1982, and 1985, respectively. In 1985 he joined the staff of the Tokyo Institute of Technology, where he is currently an associate professor in the Department of Computer Science. He was a visiting researcher of Carnegie Mellon University from 1990 to 1991. His research activities currently focus on formal verification of hardware. Dr. Yoneda is a member of IEEE, Institute of Electronics, Information, and Communication Engineers of Japan, and Information Processing Society of Japan.
