
Surfing: A Robust Form of Wave Pipelining Using
Self-Timed Circuit Techniques

Brian D. Winters and Mark R. Greenstreet
Department of Computer Science

University of British Columbia
{bwinters,mrg}@cs.ubc.ca

Abstract

This paper presents “surfing,” a novel variation of wave pipelining. In previous wave pipelined designs, timing
uncertainty grows monotonically as data propagates through gates and other logic elements. Our designs propagate
a timing pulse along with the data values, and our logic elements have delays that decrease in the presence of the
pulse. This produces a “surfing” effect wherein events are bound in close proximity to the timing pulse. This produces
a robust variant of wave-pipelining where timing dispersion is bounded regardless of the length of the pipeline. We
demonstrate our approach with the design of a simple proof-of-concept chip.

1 Introduction

This paper presents a novel variation of wave pipelining called “surfing.” In surfing rings and pipelines, a timing
pulse is propagated along the pipeline, and logic elements are modified so as to have reduced propagation delays in
the presence of this pulse. We show that when a few, simple conditions are satisfied, events in the data path will
propagate in bounded temporal proximity to the timing pulse. This prevents timing uncertainties from accumulating
in the data path, and we can propagate multiple, separate waves around a computing ring for an arbitrarily long time
without interference. Alternatively, we can implement deep pipelines that support a large number of concurrent waves
in flight.

Our approach actively decreases timing uncertainty while increasing performance. In deep submicron processes,
statistical variations between transistors can result in large variations in the delays of geometrically identical circuits.
This unpredictability impedes the use of high-speed circuit techniques that depend on controlled timing behavior in
deep-submicron processes. To the best of our knowledge, our surfing technique is the first method presented that
reduces timing uncertainty on a timescale finer than a pipeline stage.

The main contributions of our paper are:

• We show how modulating the delay of logic gates can create “event attractors” (Section 3). These attractors
propagate faster than the non-surfing delay of logic elements, resulting in negative overhead. Furthermore, these
attractors ensure timing uncertainties remain bounded, even in rings or arbitrarily long pipelines. This removes
the need for latches and their associated overhead.

• We present a simple surfing ring (Section 4). We report Spice simulation results based on a model extracted
from a layout of the ring cells (Section 7). Due to surfing, propagation delays of the XOR gates in the ring are
about 3% faster than the corresponding, non-surfing, self-resetting domino implementations. Spice simulations
indicate that the surfing ring is fast and robust in the presence of parameter variation and power supply noise.

• We describe a CMOS logic family that implements surfing (Sections 5 and 6). These circuits are a simple
variation of existing, self-resetting domino designs [CC+91].

• We describe several pipeline configurations where surfing can be utilized (Section 8), including: surfing rings,
surfing pipelines and rings used as components in larger synchronous designs, and simple networks of commu-
nicating, surfing rings.

1



.

.

.
.
.
.

.

.

.
.
.
.

D1

D2

Dn

Q1

Q2

Qn

.

.

.
.
.
.

D1

D2

Dn

Q1

Q2

Qn

.

.

.
.
.
.

combinational logic

Φ

latch 1 latch 2

Figure 1: Synchronous Design

2 Wave Pipelining

Figure 1 shows a traditional synchronous design. Let the period of the clock, Φ, be P, and let δmin and δmax be the
minimum and maximum delay from the inputs to the outputs of the combinational logic. For simplicity, we ignore
latch set-up and hold times, latch propagation delays, and clock skew, noting that the qualitative observations that
we make continue to hold in more detailed models. Classical synchronous design is based on the observation that if
δmax < P, then the values output by latch 1 on clock event n will propagate through the logic and be stable at the D
inputs of latch 2 prior to clock event n+1. The minimum clock period is determined by the slowest path through the
combinational logic. In general, reducing the clock period increases performance.

With careful control of the delays in the combinational logic, wave pipelined designs [BC+98] can achieve clock
periods less than δmax. The key idea in wave pipelining is that multiple “waves” of computation can propagate through
the combinational logic at the same time. The delays of the logic elements must ensure that waves these waves cannot
overtake one another. Figure 2 illustrates such a design.

For each gate i, let δin,i,min denote the minimum delay from a clock event to the change of an input of gate i as a
consequence of that clock event. Likewise, let δout,i,max denote the maximum delay from a clock event to the change
the output of gate i. Let P be the clock period, and let

Pmin = maxi δout,i,max −δin,i,min (1)

If P > Pmin, then the output of each gate will settle for the current wave before the next wave affects any of the gate’s
inputs. Pmin grows with the uncertainty in event times. If this uncertainty is sufficiently small, then the combinational
logic can operate with multiple, distinct waves of concurrent computation.

We will first describe operation with two waves. Assume that Pmin ≤ δmax/2 < δmin. Then, for any clock period P
with δmax/2 ≤ P < δmin, data output by latch1 on clock event n propagate through the logic and be available at the D
inputs of latch 2 for clock event n + 2. With two waves in flight, the combinational logic block operates with twice
the throughput but the same latency as the classical synchronous design.

Figure 2 illustrates this operation, showing three waves shortly after a clock event n+2. The leftmost wave corre-
sponds to data that propagated through latch 1 with clock event n+2. The middle wave shows data that propagated
through latch 1 with clock event n + 1. The one clock-cycle head start of wave n + 1 ensures that it will arrive at
latch 2 at the end of the current clock cycle without being overtaken by wave n+2. Finally, on clock event n+2, latch
2 acquired the results from the combinational logic for data that propagated through latch 1 with clock event n; this is
the rightmost wave in the figure.

More generally, if Pmin ≤ δmax/k < δmin/(k−1) holds for some positive integer k, then the circuit can operate at a
clock period P satisfying

δmax/k ≤ P < δmin/(k−1) (2)

This allows that circuit to operate with k times the throughput of classical, synchronous designs.
Timing uncertainties are the Achilles’ heel of wave pipelined design. To minimize delay uncertainties, typical

wave-pipelined designs arrange logic blocks into levels as shown in Figure 3. The uncertainty at the output of a latch
is determined by skew and jitter of the clock and variations of the propagation delay of the latch. This uncertainty grows
monotonically as each level adds its uncertainty to the accumulated uncertainty of the previous levels (assuming all
paths are sensitizable). This accumulation of uncertainty presents a fundamental limit to wave pipelining. In particular,

2



[n][n+1][n+2]

.

.

.
.
.
.

.

.

.
.
.
.

D1

D2

Dn

Q1

Q2

Qn

.

.

.
.
.
.

D1

D2

Dn

Q1

Q2

Qn

.

.

.
.
.
.

combinational logic

Φ

latch 1 latch 2

Figure 2: Wave Pipelining with Two Waves

D Q

D Q

D Q

D Q Q

D Q

D Q

D

level

δ

δ

min

max

delay

level 1 level 2 level 3 level 5level 4

Figure 3: Timing Uncertainty

3



QD QDin out
fast

in out
fast

in out
fast

data_in data_out

Φ Φ

Figure 4: A Surfing Pipeline

t tt

min

δF,min

δF,max

λmax(t)
λ (t)

δ fast,max

δ

2 5

pulse
timing

delay

t
0

t1 t 3

slow,min

4

Figure 5: Timing for Surfing

Equation 2 implies that k < δmax/(δmax −δmin) and

P > δmax −δmin (3)

Thus, uncertainty in the timing leads directly to a limit on the operating frequency. Furthermore, long datapaths that
would benefit the most from latchless operation are those with the greatest timing uncertainty. In practice, most wave
pipelined designs have only supported two to four waves. To achieve this, most wave pipelined designs employ logic
restructuring and extra delay padding to minimize delay variation. This gives these designs greater latency than their
classical equivalents, and the throughput is improved by a factor much smaller than the degree of wave pipelining. We
now introduce “surfing” and show how it can tightly bound delay uncertainty.

3 Surfing

Consider again the synchronous circuit depicted in Figure 1. Due to timing uncertainties, the signals at the inputs of
latch 2 may settle at different times. For proper operation, the latch must be triggered after the last data input has
settled. Viewed from a slightly different perspective, latches bound timing uncertainty by slowing down events that
propagate too fast. Recognizing this property of latches, Dooply and Yun [DY99] refer to latches as “roadblocks”
when deriving timing constraints for self-resetting domino circuits.

Instead of slowing down the fast signals, we propose to speed up the slow ones. Thus, our pipelined circuits have
lower latency than their unclocked combinational equivalents. This is the basis for our claim of negative overhead for
our self-timed pipelines. This section describes how selective acceleration of slow paths provides a mechanism for
increasing performance and bounding timing uncertainty.

Figure 4 depicts a simple surfing pipeline. Each logic block in the pipeline has a special input labeled fast.
Asserting fast decreases the delay of the block. In section 5 we describe a surfing logic family based on self-resetting
CMOS logic. For these circuits, active transitions are always low-to-high, and asserting fast shifts outputs slightly
toward Vdd to reduce the time of any eventual upward transition. Surfing can be effected using other circuit-level
phenomena as well. For example, body-bias modulation can be used to briefly reduce the delay of a gate at a cost of
increased leakage currents.

The delay and buffer chain in Figure 4 generates the fast signal for each logic block. Let δslow,min be the minimum
delay of a logic block when fast is not asserted, and let δfast,max be the maximum delay of a logic block when fast is

4



asserted. Let δF,min and δF,max denote the minimum and maximum delay between fast signals for consecutive stages of
the pipeline. To ensure proper operation, we require:

δfast,max < δF,min < δF,max < δslow,min (4)

When the constraints of Equation 4 are satisfied, events in the chain of logic blocks are attracted to the leading
edge of the pulses of the fast signals. To see this, consider what happens if the outputs of a logic block change before
fast is asserted for that block. In this case, the propagation delay for the next block will be at least δslow,min which is
greater than δF,max. Therefore, the timing pulse will catch up (or partially catch up) with the logic events. Conversely,
if the output of a logic block changes after fast is asserted, then the propagation delay for the next block will be at most
δfast,max which is less than δF,min. In this case, the data events propagate faster than the timing pulse and eventually
catch up.

As a metaphor, we view the propagation of data events as a swimmer in the ocean, and propagation of the timing
events as a wave. Unassisted, the swimmer cannot swim as fast as the wave. However, there is a region on the leading
edge of the wave where the swimmer is accelerated by the wave to travel at the same rate as the wave. Accordingly,
we refer to this mechanism as “surfing.”

To examine surfing in more detail, we need to consider the continuous variation of the propagation delay of the
logic block under the influence of the timing pulse. We will say that an input event to a logic block is an enabling event
if it is the last input required to enable a transition on at least one output of the block. Let λmin(t) be the minimum delay
from an enabling input event to the corresponding output event if the input event occurs t time units after the arrival of
the timing pulse. Likewise, let λmax(t) be the maximum delay from an enabling input event to the corresponding output
event if the input event occurs t time units after the arrival of the timing pulse. Figure 5 shows λmin(t) and λmax(t)
for a prototypical surfing logic block. We have also drawn the timing pulse in this figure to illustrate the relationship
between the timing pulse and the varying delay of the logic block.

Figure 5 illustrates the timing properties of a surfing pipeline in greater detail. The bottom trace depicts the timing
pulse (i.e. the fast signal) at a particular stage of the pipeline. The upper pair of solid curves show the maximum and
minimum delays of the logic block for inputs that change at the time indicated on the horizontal axis – when the fast
signal is high, delays are decreased compared with the delays when fast is low. The horizontal dashed lines show the
quantities that appear in Equation 4. The tick marks on the axes indicate that the plot is drawn with much greater time
resolution for the vertical axis than the horizontal one.

Equation 4, used the quantities δslow,min, and δfast,max. These are related to λmin(t) and λmax(t) by the relations:

δslow,min = max
t

λmin(t)

δfast,max = min
t

λmax(t)
(5)

Now, define t1, t2, t3, t4, and t5 as indicated below:

t1: The time at which λmin(t) crosses above δF,max in response to the falling edge of the previous timing pulse.

t2: The time at which λmin(t) crosses below δF,max in response to the rising edge of the current timing pulse.

t3: The time at which λmax(t) crosses below δF,min in response to the rising edge of the current timing pulse.

t4: The time at which λmax(t) crosses above δF,min in response to the falling edge of the current timing pulse.

t5: The time at which λmin(t) crosses above δF,max in response to the falling edge of the current timing pulse.

In Figure 5, dashed vertical lines depict these times.
The key properties of surfing are:

• If the enabling input events for one stage arrive in the interval [t2, t3] at one stage, then all input events will be in
interval [t2, t3] at all subsequent stages.

• If the enabling input events for one stage arrive in the interval (t1, t4) at one stage, then the input events at the
next stage will be in a smaller interval contained in (t1, t4). The sequence of such intervals for successive stages
converges to [t2, t3].

5



G G G G
D

at
a 

pa
th

timing chain

12 stages

Figure 6: A 5-bit LFSR

In other words, the interval (t1, t4) is the “capture interval” for surfing. The interval [t2, t3] is the steady state event
uncertainty; we call this the “surfing interval.” We omit the proofs of these properties due to space limitations, noting
that they are straightforward. Events that arrive in the interval [t4, t5] could surf with the current timing pulse, or they
could “fall off” and slip to the next pulse. Events in this interval are timing violations that could give rise to metastable
behaviors [CM73] and related malfunctions. In practice, the steady state interval and the violation interval are both
much smaller than the capture interval – this gives rise to the robustness of surfing.

Note that surfing gates are faster when the timing pulse is asserted. With this negative overhead, performance is
improved by implementing every gate on the critical timing paths as a surfing gate. By using surfing on every gate,
timing uncertainty is minimized. Typically, such extreme pipelining is unacceptable for traditional, latched designs
because of the latency overhead of the latches. In contrast with latched designs, surfing simultaneously lowers latency
and bounds timing uncertainty.

4 Example

To demonstrate surfing, we are implementing a pipelined computation of the recurrence:

Qi+1(u) = (Qi(u)(u⊕1)) mod (u5 −1) (6)

where ⊕ denotes addition modulo-2. This recurrence has a cyclic solution of length 15. By counting the number of
times a wave propagates around the ring, we can verify the correctness of the computation.

The polynomial recurrence from Equation 6 is easily implemented using five surfing XOR gates per stage. Each
of the Qi is a fourth degree polynomial for which each coefficient is either zero or one. Multiplication by u modulo-
(u5−1) corresponds to a circular shift of the coefficients. Exclusive-OR gates implement addition modulo-2. Figure 6
shows our implementation of this recurrence.

Our pipelined LFSR has twelve stages arranged in a ring. In addition to the XOR gates shown in Figure 6, we also
include special “loader” and “unloader” cells that allow us to initialize and observer respectively the values propagating
in the ring. We can initialize the ring to operate with either one or two waves in flight. By using a ring, we demonstrate
how surfing allows pipelined compuation to proceed through an arbitrarily large number of steps without any latches
or other storage elements. By operating the ring with two waves, we show how surfing maintains the separation of
waves for arbitrarily long paths. In particular, the timing uncertainty for events in each wave remains smaller than
the separation of the waves no matter how long the waves are allowed to propagate. This shows the key difference
between our design and traditional wave-pipelining. In wave-pipelined designs, such waves would rapidly spread out
and interfere with each other. Surfing overcomes this limitation.

The remainder of this paper describes the components of this design. Section 5 describes our modification to self-
resetting domino logic to implement gates with the fast input required for surfing. Section 6 describes the self-timed
pipeline that propagates the timing pulse.

6



y

a

g

a

b

y

i2

i1
n1

n2b

pre p2 p1

Figure 7: Self-Resetting Domino AND Gate

5 Surfing Circuits

For our proof-of-concept design, we modified self-resetting domino CMOS logic circuits to include an input to mod-
ulate the speed of the gate. Self-resetting domino circuits use pulses to represent boolean values. These circuits are
very fast, but they are also sensitive to the arrival times of input pulses. As we describe below, pulse logic is partic-
ularly amenable for surfing because we can easily anticipate the direction of signal transitions. Conversely, surfing is
well-suited for self-resetting domino, because the attraction of switching events to the leading edge of the fast signal
provides the required pulse alignment.

5.1 Self-Resetting Domino

Self-resetting domino circuits [CC+91] are a variation of domino circuits [KLL82] where the precharge control signal
for each gate is derived from the gate’s output. As an example, Figure 7 shows a self-resetting domino, two-input AND
gate. Transistors p1 and p2 are the precharge transistors. After precharge, node g is high. If the a and b inputs both
go high, then node g is pulled low and output y goes high. If either a or b remains low, then the y output remains low
as well. Asserted values in self-resetting domino are represented by pulses. After the output y goes high, inverter i2
drives its output low, enabling transistor p1 to precharge node g high which returns output y to a low value. Between
input pulses, the precharge control signal, pre is low, and node g is held high by transistor p2. This maintains the level
of g when the gate is operated at low frequencies and improves noise immunity.

Self-resetting domino circuits offer performance advantages because the only P-channel devices on the forward
path are those for the output inverters of the gates. The switching networks that implement logic functions are con-
structed entirely of N-channel transistors with their higher carrier mobilities. The self-resetting operation allows the
gate to precharge immediately after the completion of evaluation, minimizing the cycle time.

Input pulses to a multi-input self-resetting gate must have sufficient overlap to allow the N-channel network to
fully discharge the precharged node (node g in Figure 7). Furthermore, input pulses must be short enough to avoid
fights during the self-resetting precharge. These considerations place two-sided timing constraints on the operation of
self-resetting domino circuits. Typically, blocks of self-resetting domino gates are arranged in levels, similar to those
shown in Figure 3. This makes wave pipelining a natural technique for use in conjunction with self-resetting domino
designs [CC+91]. As with other wave-pipelined designs, accumulated timing uncertainty limits the depth of logic in
self-resetting domino designs. Surfing addresses this limitation by bounding timing uncertainties.

5.2 Preswitching for Self-Resetting Domino

To achieve surfing, we designed gates where asserting the fast input causes the output of the gate to shift slightly in
the direction of making a transition. For self-resetting domino logic, active transitions are always in the low-to-high
direction. Thus, we shift the low output of a gate slightly upwards in response to assertion of the fast input. We call
this shift preswitching.

As an example of our approach, Figure 8 shows a self-resetting domino AND gate with a fast input implemented
as described above. When the fast input is low, transistor p2 is conducting and functions as a keeper for the internal
node g. To minimize the capacitance on node g, we implement p2 with a minimum width device. Accordingly, if
inputs a and b are both high while fast is low, transistors n1 and n2 can overpower p2 and trigger an output pulse. In
this situation, the hindering current sourced by p2 slightly delays the transition, an effect that increases the delay in
the non-accelerated regime, therefore increasing the timing margins for surfing.

When fast is high, transistor p2 is turned off, and transistor n3 is conducting. If node g is high, then n3 pulls up
against the N-channel pull-down of inverter i1. This raises the voltage of node y slightly above ground and decreases

7



p1

y

p2 n3

fast
i1

i3i4 i2

a n1

n2b g

Figure 8: A Surfing AND Gate

a.f

b.t

fast

y.f

a.t

b.t

a.f

b.f

fast

y.t

a.t

b.f

Figure 9: A Dual-Rail Surfing XOR Gate

the delay for a subsequent rising transition of y if node g later goes low. Otherwise, if node g is low, then inverter i1 is
already pulling node y high. If node y is in transition, then the extra current from n3 simply accelerates the transition.
Thus, rising transitions of y are faster when the fast signal is high than the rising transitions of an otherwise equivalent,
non-surfing gate.

In practice, we draw transistor n3 with a similar shape factor to the N-channel pull-down of inverter i1. This design
exploits the fact that N-channel devices make poor pull-ups. Because the fight pits an N-channel pull-up against an
N-channel pull-down, our design also enjoys excellent device matching. Traditional, “five-corner” Spice simulations
show robust operation over the full range of device parameters for the 0.18µ process that we are using (see Section 7).

The sizing of transistor n3 presents some interesting trade-offs. Increasing the width of this transistor pulls node
y higher while waiting for node g to fall and further decreases the gate delay. By making the dip in the timing curve
deeper, widening transistor n3 increases the robustness of the design to timing variations. On the other hand, pulling
node y higher moves y closer to the switching threshold of the next gate. Thus, widening transistor n3 decreases the
voltage noise margin of the design. This concern is exacerbated by our use of dynamic logic. If the inputs to the next
gate are pulled higher than the threshold voltage for N-channel devices, then charge is drained from node g of that
gate, even if that gate should not be enabled to switch. If this leakage persists long enough, node g will drop below
the switching threshold of inverter i1, and the gate will produce a spurious output pulse.

Our simulations indicate that we obtain a fast and robust design when the width of transistor n3 is approximately
80% of the width of the pull-down in inverter i1. In our previous work using a 0.35µ CMOS process, we made the
width of transistor n3 equal to the width of the pull-down in inverter i1 [WG02]. In our current 0.18µ technology, the
N-channel pull-up is stronger, relative to its corresponding N-channel pull-down, than in 0.35µ, requiring a reduction
in the size of the pull-up. We are currently exploring other circuit variations to better understand the trade-off between
timing robustness and noise immunity.

In our example presented in Section 4, the logic consists primarily of XOR gates. The loader and unloader stages
are multiplexors that interface the ring with serial shift registers. These multiplexors are implemented with circuits

8



do forever
[1] wait until stage[i-1] is full and

stage[i] is empty
[2] transfer data from stage[i-1] to stage[i]
[3] set the status of stage[i] to full
[4] set the status of stage[i-1] to empty

od

Figure 10: A Simple Handshaking Protocol

D Q fi

full

Q Q

RS

D QD Q fi+1

stage[i]stage[i−1]

full

Q Q

RS

stage[i+1]

full

Q Q

RS

delay delay

Figure 11: An asP* Pipeline

that closely resemble the XOR gate; so, we focus on the XOR implementation here.
Because domino logic is non-inverting, we use a dual-rail encoding: each signal, x, is produced in true and false

versions with a pulse on the x.t wire indicating a value of true and a pulse on the x.f wire indicating a value of false.
Figure 9 shows our dual-rail surfing domino XOR gate.

6 Self-Timed Control

In synchronous designs, state transitions are regulated by clock events. For example, on each rising edge of the clock,
each latch copies the value on its input to its output to effect the state transition, and between clock events, combi-
national logic computes the next state. In contrast, self-timed designs control state transitions by using handshaking
signals.

As an example, Figure 10 shows a simple handshaking convention for a self-timed pipeline, and Figure 11 shows
one implementation of this protocol. Each time the condition for data transfer is satisfied (step [1]), steps 2–4 are
performed. If these steps are performed sequentially, with the completion of each step enabling the start of the next,
then the implementation is said to be speed-independent: the pipeline operates correctly regardless of the delays of the
data transfer, set-full, or set-empty operations. Such designs are described, for example, in [Udd84, SS93, Mar96].

Alternatively, steps 2–4 can be performed as a single, parallel action. This is the approach taken in the implemen-
tation shown in Figure 11 based on the asP* protocol from [MJ+97]. Each stage has an R/S latch that is set to indicate
that the stage is full and reset to indicate that the stage is empty. When stage i is empty and stage i−1 is full, the AND
gate between the latches for the two stages can set its output high. This triggers the D flip-flop for stage i, acquiring
the result from applying function fi to the data from stage i−1. In parallel, the status of stage i is set to full, and stage
i−1 is set to empty. The delay element on the middle input of the AND gate has a delay that is at least as large as the
delay of the circuitry that implements fi. This ensures that the result of the pipe stage has settled before triggering the
D flip-flop.

There are many other possible approaches to asynchronous design. Overviews of various approaches are provided
in [BS95, Hau95, DN97, Mye01].

6.1 GasP Backwards Control

In order for surfing to occur, our timing signals must propagate at about the same rate as or a little faster than our
fastest domino element. Self-resetting domino logic is very fast. The forward latency is less than two inverter delays,

9



i+2pi+1pi-1p pi

fast i fast i+1fast i-1

Figure 12: GasP Backwards Control

and when preswitching is being used the forward latency is only slightly greater than one inverter delay. We avoided
using a simple inverter chain because pulses can be lost. A very fast self-timed chain is required. A self-timed style
that we have found to be well suited to our purposes is GasP [SF01].

Figure 12 shows our control circuit. Operation is similar to the asP* protocol described above. Like the original
GasP, adjacent stages communicate over a single wire. A high value on wire pi indicates that stage i is full, and a low
value indicates that the stage is empty. When wire pi−1 is high (i.e. stage i−1 is full) and wire pi is low (i.e. stage i is
empty), then both inputs of the NAND gate at stage i will go high, the output of the NAND gate will go low, causing
wire pi−1 to go low (indicating empty) and wire pi to go high (indicating full). In the original GasP designs, the low
output of the NAND gate enabled the stage’s latch to effect a data transfer. In our design, we invert the NAND gate’s
output to provide the fast signal for surfing.

In the configuration given by Sutherland and Fairbanks [SF01], data propagated in the opposite direction as in
our design. Thus, their implementation has four inverter delays in the forward direction and two inverter delays in
the backward direction. In the self-timed designs for which they created GasP, the extra forward latency matched the
delay of their data paths with latches, and the smaller backward latency provided a small cycle time. Our designs
have no latching overhead, and applying preswitching to every gate in the critical path improves both performance and
timing margins. GasP pipelines closely resemble self-resetting domino designs: the two, series connected n-channel
transistors of the NAND gate correspond to the pull-down network of a self-resetting domino XOR or multiplexor,
and the p-channel pull-up to drive wire pi corresponds to the pull-up transistor in the output inverter of a self-resetting
domino gate. The NAND gate is enough simpler than the self-resetting domino gates to allow the timing pulse to
propagate slightly faster than self-resetting domino without preswitching. Thus, we found the shorter, backward
latency of GasP ideal for propagating our timing pulses.

A noteworthy feature of this design is the role of handshaking in the GasP timing chain. On the one hand, this
handshaking is essential to maintain the separation of the timing pulses for two waves as described in the previous
paragraph. Otherwise, one pulse would eventually overtake the other, causing the waves to collide and the ring to fail.
On the other hand, surfing requires that these pulses propagate around the timing chain at the rate corresponding to
the forward delay of the GasP stages; in other words, neither timing pulse should ever encounter a substantial delay
waiting for an acknowledgement from the next stage. A closer examination of the handshaking reveals that when one
pulse starts to approach the other, then the two inputs of the NAND gate for the latter pulse will change at nearly the
same time. As described by Ebergen, Fairbanks, and Sutherland [EFS98], the switching time for the NAND gate is
slightly higher when the input events are closely spaced than when they are further apart. This effect maintains the
separation of the pulses while allowing both to propagate at a rate very close to the forward delay of a GasP stage (see
Winstanley, Garivier, and Greenstreet [WGG02]).

7 Design and Simulation Results

We used the theory of Logical Effort [SSH99] as a starting point for optimizing our gates and matching the delays
of the data path to those of the GasP backwards control. As described below, we validated our design by performing
five-corner Spice simulations.

We chose to simplify our analysis of the propagation speeds of our GasP timing chain and our XOR gates, because
the LFSR is homogeneous. We measured the delays of an XOR with fast at zero volts (no preswitching) and with
fast at supply voltage (full preswitching). We sized the transistors in the GasP timing chain to achieve a forward
delay in the timing chain that is between the slow and fast delays for the surfing XOR gates. The results of our Spice
measurements are listed in Table 1.

We used the layout editor Magic [OH+84] to create a physical layout for the cells of our design. We extracted

10



NMOS PMOS no fast fast Ave. GasP
typical typical 74.0 ps 58.1 ps 71.6 ps

fast fast 59.1 ps 46.6 ps 56.7 ps
fast slow 71.7 ps 53.6 ps 70.1 ps
slow fast 77.2 ps 62.9 ps 73.9 ps
slow slow 93.8 ps 79.6 ps 90.7 ps

Table 1: XOR Delays at Process Corners

G

S

G

SD Q

G

fast

fast fast fast

R

D Q

Φ

output latch

S’

Φ

input latch

reset

A

Figure 13: Synchronized Surfing Pipeline

capacitances for our Spice simulations from the layout. We did not create a layout of the entire torus, instead using
Spice to connect the cells. We were unable to extract wire resistances; thus, they were omitted from the model. To
simulate power supply noise, we placed a 3 nH inductor in series with the power supply.

Our tests were performed in Spice using parameters from a 0.18µ, 1.8 V process. All timing measurements are
taken at the fifty percent point. Under typical process parameters, the average measured FO4 delay [HYS98] is 89.5 ps.

We tested both the speed and robustness of the design. We observed correct LFSR operation at all five process
corners. Under typical process parameters the average interstage GasP delay is 71.6 ps. Stages fully reset in less
than six interstage delays, allowing two waves in flight in our twelve stage pipeline. Our effective issue rate is over
2.3 GHz. At the fast/fast corner, our average interstage delay is 56.7 ps, for an effective issue rate of over 2.9 GHz.

Due to the homogeneity of the ring, inductive power supply noise is minimal during operation. This is an example
of an oft-noted property of self-timed designs: because there is no global clock initiating switching activity, the current
spikes associated with clock events are avoided. This reduces the problems of inductive power supply noise in self-
timed designs. Using a self-timed timing chain, our ring enjoys the same advantage.

8 Configurations

The previous sections described the design and operation of a surfing ring. Such rings demonstrate the stability
of surfing: waves can propagate for an arbitrarily large number of orbits of the ring without losing coherence. In
this section, we describe alternative configurations for surfing circuits, showing how they can be applied in various
situations, and describing the design considerations that arise.

8.1 Pipelines

A straightforward application of surfing is within a larger synchronous design. As shown in Figure 13, a surfing
pipeline can be placed between two synchronous latches. In the figure, stages of the surfing data path are labeled “S;”
stages of the GasP timing path are labeled “G;” the clock-to-GasP adaptor is labeled “A;” and the end-of-pipeline ter-
minator is labeled “R.” With each clock event, data from the “input latch” enters the surfing data path. Simultaneously,
the clock event triggers the GasP pipeline through the adaptor “A,” which produces the timing pulse that propagates
down the GasP chain to keep the data wave coherent. The final surfing stage, S′, is reset by the next rising edge of
the clock; in other words, it is not self-resetting. This ensures that data output by the pipeline remains stable until it is
acquired by the output latch.

A surfing pipeline as shown in Figure 13 provides a safer alternative to wave-pipelining [BC+98]. Surfing ensures
that consecutive waves cannot overtake one another while improving the overall performance of the circuit. For
example, many microprocessors use wave-pipelined L1 caches that support two waves: the cache access time is two

11



R

q

q

end−of−pipe terminator

Φ

p
clock−to−GasP Adapter

A pΦ

Figure 14: Pipeline Components

RΦ ΦA

S
QD

output
latch

S
S

S

S
S

S

S’
QD

latch
input

G
G

G

G

G
G

G

X

Figure 15: A Surfing Ring In a Synchronous Pipeline

clock periods, and a new access can be initiated every clock cycle. Such designs are amenable to surfing where the
surfing stages could correspond to the row decoder, local-bit-line repeaters, the column selector, the tag comparator,
etc.

As another example, we previously described a surfing multiplier design [WG02]. While that design is very simple,
it illustrates how complex data-path functions can be implemented using surfing pipelines to improve performance.
For example, surfing could be used to decrease the latency of floating point function units in a typical microprocessor.

Taking a closer look at the design from Figure 13, the backwards GasP stage, “G,” is defined in Figure 12, and
Figure 14 shows implementations of the clock-to-GasP adaptor, “A,” and the end-of-pipeline terminator, “R.” In re-
sponse to a rising edge of the clock, Φ, the clock to edge adaptor, A, pulls up on shared line p. This triggers the GasP
stage connected to A, which in turn returns p to a low level. Conversely, in response to a rising edge of signal q from
the previous GasP stage, the end-of-pipeline terminator, R, pulls down on shared line q after a short delay, returning
the shared line to its quiescent value. The input latch has self-resetting outputs to produce pulses as required by the
surfing datapath. For datapaths that use dual-rail encodings as described in section 5, the latch can be designed to
convert single rail inputs to dual-rail outputs. Noting that the output of the latch should change as adaptor A pulls up
on the shared line, a surfing implementation can be used for the latch to improve performance and control timing from
the beginning of the pipeline.

As shown in Figure 13, the last stage of the surfing pipeline provides persistent outputs to satisfy the timing
requirements of the output latch. Thus, the designer must determine safe bounds for the range of possible arrival
times of the data with respect to the clock. In many designs (such as the L1 cache example above) this uncertainty
will be less that a clock period, in which case a simple latch is sufficient. Delays of nearly two clock periods can
be accommodated by the skew tolerant latch presented by Chakraborty and Greenstreet [CG02]. To tolerate even
greater variations, pipelines that mix surfing with traditional, asynchronous handshaking can be used as described in
section 8.3 below.

12



G

S

G

S

GG G G

S S S L

JF

G

L

G

S

G

S

G

S

fork join

Figure 16: Coupled Rings

8.2 Rings within Pipelines

When a surfing datapath is used to implement an iterative computation, then a surfing ring may be employed within
a synchronous pipeline as shown in Figure 15. This is the surfing equivalent of Williams’ classical self-timed ring
for SRT division [WH91]. In this configuration, the cell labeled “X” provides the interface between the pipeline and
the ring. In a simple implementation, the ring is initially empty and waits to receive a wave from the left side of the
pipeline. Upon receiving a wave, cell X propagates it into the ring. The iteration itself is controlled by the value of
data in the wave. For example, these data may include a field that is used as an iteration counter; when the counter
reaches a predetermined value, X propagates the result into the right side of the pipeline. As with the simple pipeline,
the last stage of the pipeline provides persistent outputs for the output latch.

When using this configuration, drafting effects [WGG02] must be taken into account. When two or more events
propagate through a self-timed pipeline in rapid succession, the outputs of each pipeline stage may not fully transition
to the power or ground rails before the next event arrives. This reduces the stage-to-stage propagation delay for the sub-
sequent stages. Thus, later events tend to “draft” earlier ones. Pre-switching can be used to control drafting [WGG02].
We expect that such techniques will be helpful when implementing rings such as the one shown in Figure 15.

8.3 Coupled Rings

So far, we have described simple linear pipelines and rings. While such structures can be used locally in a design to
improve performance, large designs typically consist of many interacting pipelined pathways. A stage may receive
inputs from or transfer its output to multiple stages, Figure 16 shows a simple instance of such a configuration where
a “fork” cell sends its output to two separate pipelines, and the “join” cell combines the outputs of these two pipelines
into a single stream. The fork operation presents little difficulty for a surfing design: the output of the forking stage is
sent to both receiving pipelines, and a standard GasP fork [SF01] can be used in the timing path.

The join operation introduces a new complication. In general, it is impractical to match precisely the delays of
the two pipelines that feed the join; thus, a datum from one pipeline may arrive substantially before the corresponding
datum from the other pipeline. Surfing, however, does not provide a mechanism for holding a value. Instead, we use
traditional, handshaking pipestages at the end of each surfing pipeline entering a join. In Figure 16, these handshaking
stages are labeled “L” to indicate the presence of a true latch. This latch can be, for example, a GasP latch [SF01], a
mousetrap latch [ST+02], or any other design that supports the cycle time of the surfing pipeline. Note that the number
of handshaking stages only needs to be sufficient to account for timing mismatches between the pipelines entering the
join. With careful design, such mismatches should be kept small, and only one or two such latching stages should be
needed at the end of any surfing pipeline.

13



9 Conclusions and Future Work

We have presented surfing pipelines and described their implementation using a simple variant of self-resetting
domino. These pipelines achieve negative overhead: the latency of the pipeline is less than delay of an purely combi-
national logic implementation. Furthermore, the event attractors created by surfing support arbitrarily high degrees of
wave-pipelining without latches or other road-blocks.

In our surfing pipeline, the delays of logic elements are modulated by timing pulses that propagate along with
events in the pipeline’s data path. We use self-timed, GasP pipelines to propagate these pulses. The use of a self-
timed design was motivated by the high speed of GasP that is well matched to the propagation delays of surfing logic
elements. By using self-timed handshaking, GasP ensures that pulses are not lost in the timing chain due to timing
imbalances, while avoiding the need for elaborate pulse-shaping circuitry.

To demonstrate this approach, we have designed a small LFSR ring. Spice simulations indicate that the pipeline
can operate with an effective issue rate of over 2.3 GHz with typical process parameters and 2.9 GHz at the fast/fast
corner. The latency of the logic is reduced by 3% compared with the corresponding, purely combinational design.
This shows that surfing does indeed achieve negative overhead as promised.

We have examined robustness issues and the design appears to be tolerant of process parameter variation and power
supply noise. Our next step is to fabricate a larger version of the LFSR to experimentally verify the simulation results
and perform further tests.

As mentioned in Section 5, our approach to surfing introduces a trade-off between timing margins and noise
immunity. Clearly much more extensive analysis and testing must be done to examine the noise sensitivity of surfing
domino logic. Furthermore, we are exploring variations of the basic surfing gate design presented in Section 5 to
determine if designs that are even faster and/or more robust are feasible.

The design of the LFSR was simplified because its critical paths consist of chains of identical gates. We expect
that surfing can be employed profitably in other structures as well. For such designs to be practical, we need to
find practical design methodologies that will ensure sufficient matching of forward delay of the control chain to the
propagation delay of the data path. Logical effort [SSH99] is an obvious place to start. Determining a consistent effort
model for preswitched gates and developing the rest of a design methodology are key areas for future work.

Testing is another major issue that we have yet to address. For example, scan testing relies on stopping the device
under test while loading or unloading the scan registers. While stopping can be relatively straightforward with latch
based designs, surfing seems much less amenable to stopping: once a wave is launched, it traverses the entire pipeline.
We are currently exploring ways to test surfing pipelines while data is in flight.

References
[BC+98] Wayne P. Burleson, Maciej Ciesielski, et al. Wave-pipelining: A tutorial and research survey. IEEE Trans. on VLSI Systems, 6(3):464–

474, September 1998.

[BS95] Janusz A. Brzozowski and Carl-Johan HṠeger. Asynchronous Circuits. Springer, 1995.

[CC+91] Terry I. Chappell, Barbara A. Chappell, et al. A 2-ns cycle, 3.8-ns access 512-kb CMOS ECL SRAM with a fully pipelined architecture.
IEEE J. of Solid-State Circuits, 26(11):1577–1585, November 1991.

[CG02] Ajanta Chakraborty and Mark R. Greenstreet. A minimalist source-synchronous interface. In Proceedings of the 15th IEEE ASIC/SOC
Conference, September 2002. to appear.

[CM73] T.J. Chaney and C.E. Molnar. Anomalous behavior of synchronizer and arbiter circuits. IEEE Trans. on Computers, C-22(4):421–422,
April 1973.

[DN97] A. Davis and S.M. Nowick. An introduction to asynchronous circuit design. Technical Report UUCS-97-013, Computer Science
Department, University of Utah, September 1997.

[DY99] Ayoob E. Dooply and Kenneth Y. Yun. Optimal clocking and enhanced testability for high-performance self-resetting domino pipelines.
In Proceedings of the Twentieth Anniversary Conference on Advanced Research in VLSI, pages 220–214, March 1999.

[EFS98] Jo C. Ebergen, Scott Fairbanks, and Ivan E. Sutherland. Predicting performance of micropipelines using Charlie Diagrams. In Proc. 4th
Intl. Symp. on Adv. Research in Asynchronous Circuits and Systems, pages 238–246, April 1998.

[Hau95] Scott Hauck. Asynchronous design methodologies: An overview. Proceedings of the IEEE, 83(1):69–93, January 1995.

[HYS98] Mark Horowitz, Chih-Kong Ken Yang, and Stefanos Sidiropoulos. High-speed electrical signaling: Overview and limitations. IEEE
Micro, 18(1):12–24, Jan./Feb. 1998.

[KLL82] R.H. Krambeck, C.M. Lee, and H.S. Law. High-speed compact circuits with CMOS. IEEE J. of Solid-State Circuits, SC-17:614–619,
June 1982.

14



[Mar96] Alain J. Martin. A program transformation approach to asynchronous vlsi design. In Manfred Broy, editor, Deductive Program Design,
NATO ASI. Springer, 1996.

[MJ+97] Charles E. Molnar, Ian W. Jones, et al. A FIFO ring oscillator performance experiment. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 279–289. IEEE Computer Society Press, April 1997.

[Mye01] Chris J. Myers. Asynchronous Circuit Design. Wiley, 2001.

[OH+84] John K. Ousterhout, Gordon T. Hamachi, et al. Magic: A VLSI layout system. In Proceedings of the 21th ACM/IEEE DAC, pages
152–159, Albequerque, NM, June 1984.

[SF01] Ivan Sutherland and Scott Fairbanks. GasP: A minimal FIFO control. In Proc. 7th Intl. Symp. on Adv. Research in Asynchronous Circuits
and Systems, pages 46–53, April 2001.

[SS93] Jens Sparsø and Jørgen Staunstrup. Delay-insensitive multi-ring structures. INTEGRATION, 15(3):313–340, October 1993.

[SSH99] Ivan Sutherland, Bob Sproull, and David Harris. Logical Effort: Designing Fast CMOS Circuits. Morgan Kaufmann Publishers, Inc.,
January 1999.

[ST+02] Montek Singh, José A. Tierno, et al. An adaptively-pipelined mixed synchronous-asynchronous digital fir filter chip operating at 1.3
gigahertz. In Proc. 8th Intl. Symp. on Adv. Research in Asynchronous Circuits and Systems, pages 77–88, Manchester, UK, April 2002.

[Udd84] Jan T. Udding. Classification and Composition of Delay-Insensitive Circuits. PhD thesis, Eindhoven University of Technology, 1984.

[WG02] Brian D. Winters and Mark R. Greenstreet. A negative-overhead, self-timed pipeline. In Proc. 8th Intl. Symp. on Adv. Research in
Asynchronous Circuits and Systems, pages 32–41, April 2002.

[WGG02] Anthony J. Winstanley, Aurelien Garivier, and Mark R. Greenstreet. An event spacing experiment. In Proc. 8th Intl. Symp. on Adv.
Research in Asynchronous Circuits and Systems, pages 42–51, Manchester, UK, April 2002.

[WH91] Ted E. Williams and Mark A. Horowitz. A zero-overhead self-timed 160ns 54b CMOS divider. IEEE J. of Solid-State Circuits,
26(11):1651–1661, November 1991.

15


