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Abstract

Asynchronous circuits behave like concurrent programs implemented in hardware logic. The processesin such circuits
are synchronised in accordance with the dynamic logical and causal conditions between switching events. The classical
paradigm, easily represented in most process-oriented languagesfor concurrent systems modelling, is AND causality, which
is often associated with a rendez-vous synchronisation. In this paper we investigate a different, less known paradigm, called
OR causality. This paradigmis however different from the classical MERGE paradigm, which is based on mutually exclusive
events. It has its own subtypes. Petri nets and Change Diagrams provide adequate modelling and circuit synthesis tools
for the various OR causality types, yet they do not always bring the specifier to a unique decision about which modelling
construct must be used for which type. We present a unified descriptivetool, called Causal Logic Net, which is graphically
based on Petri net but has an explicit logic causality annotation for transitions. It isaimed asthe least possiblegeneralisation
of Petri nets and Change Diagrams. The signal-transition inter pretation of this tool is analogousto, but more powerful than,
the well-known Signal Transition Graph. A number of examples demonstrate the usefulness of this model in the synthesis of
asynchronouscontrol circuits. It is shown that the extension of the basic, unconditional, firing rule with the one that depends
upon the marking of the transition preconditionsincreasesthe descriptive power of the model to that of Turing Machine and
allows the modelling of non-commutative state transition behaviour in a purely causal form.

1 Introduction

Asynchronous circuits can be seen as hardwired versions of concurrent programs. Such a circuit is an interconnection of
primitive components, which can either be single-output logical gates or multi-output elements, such as mutual exclusion
“gates’. The switching events occurring on the circuit inputs and the outputs of the gates when some Boolean conditionsin
the circuit are not satisfied are those atomic computational actions that characterise the behaviour of any concurrent system,
inwhich processes interact and communicate.

There have recently been many successful attempts of using concurrency models for the verification and synthesis of
asynchronous, speed-independent or delay-insensitive circuits! [24, 2, 16, 6, 32, 15, 35, 8, 13, 20, 3, 14, 12], to name but a
few. The models used in these papers can be broadly classified into three main groups:

o finite-state machine based models,
e process algebraic models,
e event-based or causdity models.

The first group [20, 3] essentialy builds on the traditional Huffman model of asynchronous circuit, which is closer to
the standard synchronous approach used in sequential synthesis. This model assumes the so-called fundamental mode of
operation between the circuit and its environment, in which the inputs may not be changed until the circuit e ements have
been brought into steady state.

nformally, speed-independent circuits are asynchronous circuits whose correct operation does not depend on output delays of the constituting gates.
Delay-insensitive circuits are asynchronous circuits whose correct operation does not depend on interconnection delays among those gates as well. The
correct operation of a generic asynchronouscircuit, on the other hand, may depend on specific information about gate and wire delays.



The second group [6, 15, 8] makes use of the various compositiona and transformationa techniques avail able through
the description of a circuit as a collection of communicating processes. Each element stands for a process with itsinput and
output signals being the communication channels or ports. This approach assumes that a set of basic components, generally
more complex that the standard set of logic gates, is available during the design procedure. Moreover, it makes certain
assumptions on the delays of the interconnections between such modules that require a great deal of care in the fina layout
phase. Another important shortcoming of thisapproach isitsincapability of explicitly representing causality at the event level
(e.g. the ordering rel ationship between the rising or falling edges of signas).

Thethird approach [24, 2, 16, 35, 13, 14, 12] isbased on theinherently causal framework of Petri nets and avoidsthemain
problems of the first two groups. It has been mainly developed through the Signal Transition Graph model (STG), which
interprets Petri net transitions as signa transitions. The capability of modelling causality explicitly is crucid in designing
control-dominated circuits such as interfaces, which have been traditionally modelled with timing diagrams. A number of
analysis and synthesis techniques have been devel oped and automated. Such techniques generate hazard-free circuits from
STGsunder certain restrictionsimposed on the structural and behavioura subclasses of STGs, logical element basisand delay
models. An important fact has been formally proved in [34] that STGs are sufficient in their modelling power to represent
speed-independent (more precisely, semi-modular as defined in [18]) circuit behaviour. As was shown in [11, 33, 34, 7]
speed-independent behaviour is characterised by two major forms of causality between signa transitions, strong (AND) and
weak (OR) causality. Let us assume for example, that event a has two cause events b and ¢. The strong form of causality
assumes that both events b and ¢ must have occurred before the given event a may occur. Therefore, in the “strong” case,
every cause strongly precedes its effect. In the case of weak causality the event a may occur after any of the events b or ¢
have occurred. 1.e. inthe“weak” case an event in question may be caused by any cause belonging to the set of weak causes
for the event, provided that at least one such cause has occurred.

There are however certain limitationsinherent in STGs that prevent them from efficient modelling of wesk causdity in
circuits. The problem is thus with the underlying Petri nets, whose event dynamics is “biased” towards the strong form of
causality (a Petri net transition fires only if all itsinput places contain tokens). Weak causality can only be represented in
Petri netsindirectly, by using complicated place/transitioninterconnecting schemes (see, e.g., Figure4). For this, the Petri net
must be made unsafe (allow more than one tokenin aplace). Most of the existing STG-based methods and tools require the
underlying Petri net be safe. The non-safety should generally be no problem per se, but the problem arises because there is
no precise way of saying how the second token arriving in the place that models the OR causality has to be “removed” before
the place can be remarked again.

Such problems appear to be resolved in a dightly different model, called Change Diagram [33, 13, 12]. The Change
Diagram, whose original target was circuit behaviour modelling, gives “equal priority” to the two maor causaity types
because events have two mechanisms of enabling. To avoid the need for unsafeness when representing OR causality, Change
Diagrams have a “token borrow” mechanism, which allows a place ? to be marked with a negative value. Note that Change
Diagrams can still be unsafe if thisis required for other modeling purposes than representation of OR causdlity per se. It
has been shown [34] that certain behaviours that are representable with finite but unbounded (i.e., with places with unlimited
marking) Change Diagrams cannot be modelled using afinite STG representation.

Unfortunately, Change Diagrams have a number of shortcomings, one of which is the other side of the negative marking
“medal”. It is possible to model some conflict-free (corresponding to semi-modularity in circuits) behaviour with a finite
and bounded Petri net, while the corresponding Change Diagram would be negatively unbounded [34]. Furthermore, Change
Diagrams, in their present form cannot directly represent processes with conflicts or choice. This appears to be a serious
limitation because the designer has to apply some external compositional mechanisms in order to model such behaviours,
which are commonplace in multi-modeinterface protocols(e.g., memory Read and Write operations).

In this paper we tackle the discrepancy between these otherwise closely related models. We first present a series of
exampl es which show the importance of being able to model both types of causality in asynchronous hardware. Secondly, we
demonstrate the ways in which both STGs and Change Diagrams model the weak form of causality, OR causality. With the
aid of examples, we also show the problems of each of the two languages in modelling some “difficult” cases. Thirdly, we
present a way for unifying the capabilities of both models into one model, called Causal Logic Net, that is based on a Petri
net graphical notation augmented with the causal logic attributefor transitions. The latter isin the form of Boolean enabling
functionsfor net transitions. The Causal Logic Net model isthusviewed as the main theoretical contribution of this paper.

We present an example of synthesizing circuitsfrom the Causal Logic Nets, from which we elicit two major types of OR
causality. Thispart of our study resultsinacrucia practical result, whichisthe precise recommendation for the specifier asto
which modelling construct of the Causal Logic Net hasto be used to represent aparticular type of OR causality. Formerly [37],
such a recommendation was not clear enough.

The final issue addressed in this paper is the extension of the basic Causal Logic Net model to the level of descriptive
power equal to that of Inhibitor nets [21]. This requires defining another transition firing mechanism, more general that the
one used in ordinary Petri nets. An important consequnce of this generalisation isthat, in combination with OR causality, it
allowsthe modelling of anon-standard form of nondeterminism in circuit behaviour. Thisformiscalled non-commutativity.

2To be more precise, an arc, since a Change Diagram is a directed graph in which marking is attributed to the arcs between vertices.



We demonstrate how the behaviour of a Fair Arbiter, originally presented in the form of a non-commutative state transition
diagram in [34], can be described by means of an extended Causal Logic Net, which captures concurrency semantics in its
explict form.

2 OR causality: Background and Motivation
2.1 Real lifecases

The following two examples show that we often deal with the weak form of causality between events without paying too
much attention to the way we should modd! it.

Cautiousclient. Consider the following situation that often occurs when we are, as clientsor customers, looking for better
service from some businesses, such as travel agencies or building companies. Imagine we have a job that cannot be done
without the help of a professional, who knows thisjob better. We take a Yellow pages volume and select a number of firms
who are supposed to be eager to do thisjob for us. Now, imagine that we are a bit overly cautious and we would not liketo
rely on just one agent but select at least two of them, whom we give the specification of the job. We set them to do the job
at the same time, and then when the job is finished by at least one of them, we proceed further without caring much about
the other agent, who may have not yet finished the job 2. Since the job has been the same, we do not really mind whose
results we shall be using afterwards. Perhaps, later we realise that the other agent also has completed the job. So we may
takethe results of the both agents and compare them to see that neither of them has cheated (thisisthe minimum redundancy
and hence minimum error assurance unless we are able to pay for more agents involved). Such a comparison would be the
advantage that we take from the initially redundant operation scheme.

Now, leaving al onethe question of the benefits and overheads we have had from using the redundancy technique (whichwe
must have), let uslook at thissituationonly from the viewpoint of the order of actionsinvolved and their temporal relationship.

As it has been described, the actions A; and A», standing for the operations performed by the corresponding agents,
are executed in parallel, independently of each other. Then, as soon as either of them has been complete, we start the third
action Cy, which denotes our further activity as a client. At some point later, in order to do something else (for example,
ascertain the correctness of the results or activate the same two agents again), we need to check if both agents have finished
their assignment. Thus we may have the fourth action C» which happens after both 4; and 4, have finished.

In the above situation, we say that action C; isweakly (OR) caused by actions 4; and A, as opposed to action C, that is
strongly (AND) caused by A4; and As.

Scheduling n taskson m (m < n) resources. Imagine agroup of n independent tasks (say, in an operating system kernel)
which may be executed concurrently because they carry no mutual dependency on the results of each other. Unfortunately,
the number of resources available for their parallel execution, denoted as m is such that m < n. For simplicity, let n = 3 and
m = 2.

Sincethereisnoway torunthethreetasksin paralel, asfor example would have been possible had we one extraresource,
the natural way for achieving maximum performance would be as follows. First, we run two of them on the pair of available
resources (let us denote these two actions A and B) and then, upon the completion of the fastest of them, we alocate the
released resource to the remaining task (start action C).

Itisclear that actions A and B cause action C in aweakly causal manner.

The described situation is somewhat intermediate in performance between the case when m = n = 3 and thecase in
which the orderingis based on strong causdlity (i.e., C begins after both A and B have been completed). Thefirst situationis
impossible because in our case we have m = 2, whilethe second case is obvioudy not required in this case.

The above performance relationship is easily proved by simpletiming analysis. Lett 4,¢p and t¢ denote the duration of
the corresponding tasks. Then the full execution times for the compared three strategies would be as follows:

T = maz(ta,ts,tc), Tor = maz((min(ts,tB) +tc) ta,ts), Tanp = maz(ts,tp) +tc.

Obviously, T < Tor < Tanp- Thusif the number of resources is limited, one should resort to a schedule with weak (OR)
causality, which is more advantageous than the one based on partia order with just strong (AND) causality.

Both these very simple, yet vivid, examples demonstrate that there should be an adequate way of modelling this form of
dynamic organisation of systems, even without considering its specific character in asynchronous circuits.

2.2 OR causality in circuit design

Let us now look at the examples where OR causality allows better functionality in hardware structures.

3Unfortunately, the real world does not offer us this luxury free of charge and we must pay for both jobs at the outlet anyway.
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221 Wired OR synchronisation

One of the classic problems in asynchronous hardware is that of organising a group of modules in such a way that they
execute a sequence of operations synchronously but without using a common clock. A standard way here can be the use of
amulti-output C-element, sometimes called also Muller C-element due to its inventor, D.E. Muller (whose pioneering work
was surveyed in [17]). The behaviour of atwo-input C element is defined by the following logical equation:

Y = 2122 + (21 + 22)y,

where 2, and z, are input signasand Y is the output signa, which is fed back and given the name of y. In both transition
phases (0-1 and 1-0), the value of Y is changed last with respect to the changes of =, and #;. For example if in the state
where dl three signalsareinitialy set to 0, both 2, and 2, concurrently switchto 1, the output Y beginsto switchto 1 if and
only if 2 = #2 = 1. Dueto this effect, a C-element is also called an event-based AND gate [29, 23]. The form of causality
used in it isthe strong one.

Let us now assume that we need to provide synchronisation for a group of modules, whose number is so large that we
cannot interconnect them to a central multi-input C-element. Nor we are allowed to construct a distributed chain of two-input
C-elements, one for each module, since this seria interconnection would be prohibitively slow in action.

Andternativeideato synchronisethese modul esin adistributed way has been used for examplein[28]. Itisbased on abus
interconnection and the so called wired-ORlogic. All modules are interconnected to a fixed number of wires (independently
of the number of modules synchronised) and performing the synchronisationin a hazard-free way with the speed that isagain
approximately independent of the number of modules, as shown in Figure 1. It was shown in [28] that the least possible
number of wires required for such a synchronisation is three and the signal transitions on these wires are cyclically shifted
through these three wires, denoted say as z, y and z, executing a each cycle both the causal AND and OR synchronisation
actions.

The reason for both types of causality issimple. It isdueto the operation of abus wire with respect to thelocal (“input”)
wires. A buswire, say #, when itssignal state isto be changed from “high” to “low”, becomes asserted to “low” immediately
after thefastest of its“input” wires becomes“low” —here, it performs OR causality. In the oppositecase, for the change from
“low™ to “high”, the bus wire = waits until the slowest of the “input” wires has been released to “high”. Only then it can
be released to “high” itsdlf — the situation of AND causality. The overall operation on the three identical wires requires that
AND and OR causality actions alternate and are performed on the adjacent bus wires. Namely, if theinitial state for the order
zyz is011, first, the OR action is performed on y, then the AND action on z, then OR on z, then AND on y etc.

In this behaviour the use of OR causality is caused by the properties of asingle buswire that behaves likealogica AND
gate. Interms of events such agate exhibits strong causality in one phase and weak causality in the other.

2.2.2 Hardware structures with redundancy

An example, analogousto our “cautious client” example, can beillustrated in hardware structures for fault-tolerance, where a
certain level of redundancy helpsto ensure (at least by detecting the presence of an error) that the computations are performed
correctly. Let ushave agroup (for simplicity, consider two) of functionally equivalent modulesthat are possibly implemented
inadifferent way and hence work with different speeds. Assume that these modules, for the same tasks, present their results
on a common bus, which we have called the Merging Bus as shown in Figure 2.



Input Data

x|

Merging Bus
Comparator 1 Comparator 2

OK Failure Output Data Failure

Module 1 Module 2

kI*
=il

Figure 2: Hardware structure with redundancy

The modules operate in the manner where the computation result is taken from the first-to-compute module and placed
on the Merging Bus in an OR-causal way. The subseguent completion of the task in the other module must be awaited in
an AND-causal way only to check the successful comparison of the result of each module with the result established on the
Merging bus, with the possibility of abackward recovery action inthe case of amismatch. If thereisno mismatch, the normal
compuitation flow can be aready well ahead of the current point of the result checking, thus making the whol e fault-tolerance
mechanism operate generally faster than in conventional schemes, inwhich avoting el ement usually waitsfor the compl etion
of the tasksin dl the modules before producing the final result for the next computation stage.

2.2.3 Lowlatency arbitration

We have recently developed an arbiter [36] that makes use of the idea that was originally proposed in [38] and implemented
in[9]. Theideato use OR causality for faster arbitration emerged in [38] in the context of the process algebraic approach.
On the other hand, the circuit in [36] improves on the circuit in [9] by exploiting the explicit causality modelling achievable
through the use of STGs, thus motivating the introduction of explicit OR causality in our mode.

An asynchronous arbiter is a device that dynamically allocates a single shared resource to the user modules in a system
without a common clock. Each user, when it needs the resource, issues an asynchronous request and waits until the arbiter
producesagrant. The user then uses the resource and after finishingitsaction releasesitsrequest. Thisresultsin asubsequent
release of the grant, after which the user can issue another request and so on. The arbiter, when it receives a number of active
requests from different users, generates after some delay a grant to exactly one of them and leaves other requests pending
until the granted user has rel eased the request. The arbiter then releases the grant and, if there are pending requests, produces
another active grant, again on a mutually exclusive basis.

Let us consider a typica cdll of a multi-way arbiter that arbitrates between two users [26]. Multi-way arbitration is
organised by cascading such cells to form atree or achain. Each cell propagates the request in the direction from the lower
level to the upper level, while the grants are generated in the opposite direction. Figure 3.(a) shows one such cell with its
threerequest-grant handshakelinks (R1, G1), (R2, G2) and (R, G), where (R1, G1), (R2, G2) stand for thelinkswith lower
levels, producing competing requests R1 and R2, and the (R, G) pair isthe link with the upper level. Figure 3.(b) illustrates,
with the help of a timing diagram, the handshaking protocol between the links. After the first request by R1 is granted and
the resource is released, two simultaneous requests are made by R1 and R2 and granted in turn.

Asynchronous arbiters of this type are usualy implemented using an SR flip-flop and an analogue mutual exclusion
element that isaimed at resolving the metastability and oscillation anomalies occurring in the flip-flop. The time it takesto
resolve the arbitration can be much longer than an ordinary switching delay [25]. The implementation of the arbiter described
in [9] is advantageous over the one in [26] for it allows not to wait for the arbitration to be resolved by the local mutua
exclusion element before propagating the request (signal R) to the upper level. The circuit presented in[9] uses aweak form
of causality to produce the request on R from the arrival of R1 or R2 (thefirst of them causes R to be set), thereby alowing
the arbitration resolution process to be executed in parallel with the process run in the upper level to generates the grant on
G. Normally, of course, when the signal on G arrives the cell isready to generate an appropriate grant either on G1 or G2
depending on which of the grants has been chosen by the mutua exclusion element.

The above example shows that using OR causality seems quite a natural way of organising the dynamic behaviour in
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Figure 3: The arbiter example

circuits. Yet, thedescriptivetools of even such event-oriented model s as Petri netsare not very well suited for the modelling of
thisform of causality in auniversal way. Thefollowing section more formally provesthe need for the modelling enhancement
of Petri nets.

3 Modelling OR Causality in Signal Transition Graphs and Change Diagrams

3.1 Petri Netsand Change Diagrams

When talking about Signal Transition Graphs and their ability to model the forms of causality, in this paper we often address
the properties of their underlying model, Petri nets. On the other hand, there has been no separate, uninterpreted, notation
defined for Change Diagramsin theliterature ([ 13, 12]), so we shall use the same name to refer to the more abstract unlabelled
version of such amode.

The following table summarises the unified terminol ogy that we will follow in the remainder of the paper.

PN/STG CD this paper
transition/event | event transition/event
signal transition | change | signd transition
marking activity | marking

3.1.1 Petri nets

Petri nets[21, 19] are a widely used mode for concurrent systems, because they have avery simple and intuitive semantics,
that directly captures concepts like causality, concurrency and conflict between events.
A Petri net (PN) isatripleP = (T, P, F) where:

e T isanon-empty finite set of transitions,
e P isanon-empty finite set of places, and
e F C (T x P)U(P x T) istheflow relation between transitionsand places.

A PN can be represented as a directed bipartite graph, where the arcs represent elements of the flow relation.

A PN marking isafunctionm : P — {0,1,2,...}, where m(p) is called the number of tokensin p under marking m.
A marked PN isaquadruple P = (T, P, F, mq), where mq denotes itsinitial marking. A transitiont € T isenabled at a
marking m if al its predecessor places are marked. An enabled transition¢ may fire, producing a new marking m’ with one
less token in each predecessor place and one more in each successor place (denoted by m[t > m').

A sequence of transitions and intermediate markings m[t, > mq[t; > ... m' iscalled afiring sequence fromm. The
set of markings m' reachable from a marking m through a firing sequence is denoted by [m >. The set [mo > iscaled the
reachability set of amarked PN with initial marking mq, and amarking m € [mo > is called a reachable marking.

A PN marking m isliveif for each m' € [m > for each transition ¢ there exists a marking m'"’ € [m’ > that enablest.
Similarly, atransition¢ isliveif for each m' € [m > there existsamarkingm'’ € [m' > that enablest. A marked PN islive
if itsinitial marking islive.

A marked PN isk-bounded (or simply “bounded”) if there existsan integer k such that for each place p, for each reachable
marking m we have m(p) < k. A marked PN issafeif it is 1-bounded.

A transitiont; disablesanother transitiont, a amarking m if both¢; and ¢, are enabled at m and ¢, is not enabled at m’
wherem[t; > m'. A marked PN ispersistent if no transition can ever be disabled at any reachable marking.



\

Figure 4: Petri net model for the “cautious client” example

A PN isaMarked Graph if every place has exactly one predecessor and one successor. A PN is free-choice if for any
two transitionst; and ¢, that share a predecessor place¢; and ¢, have only one predecessor. (i.e. any two transitionswith a
common predecessor place have only one predecessor).

A marked PN P = (T, P, F, mg) generates a state graph, called Reachability Graph, ([me >, E, T, §), where for each
edge (m1, mz) € E, suchthat mq, my € [me > and my [t > mgy, we have §(my, mz) = ¢.

Earlier work on Signal Transition Graphs [2, 16, 31] required the underlying PN to be live, safe and free-choice. These
requirements severely restricted the class of modelled behaviours. On the other hand, [33, 37] showed that in order to model
OR causality in PNs as a relationship between PN transitions (rather than through their possible labels, thus introducing an
extraleve of interpretation), we must extend the class of netsto unsafe non-free-choice ones. Furthermore, such an extension
isrequired even if we model behaviour without conflicts (alternatives or choice). On the other hand, conflict-free behaviour
with only AND causality can be modelled with Marked Graph nets ([5]).

Figure 4 shows alabeled PN model of the system described in our “cautious client” example. Notethat PNs used for the
representation of Signal Transition Graphs have traditionally been depicted in a*“shorthand” form, which seems convenient to
thecircuit designer and which is adopted in this paper unlessit creates confusion. In thisform, PN transitions are denoted by
their corresponding label s (instead of bars or boxes) and PN placesare explicitly denoted by circlesonly if such place hasmore
than one predecessor or successor transitions. If aplace has only one predecessor and one successor, the corresponding circle
isomitted and the token marking is associated with the arc (a similar notation is often used to represent Marked Graphs[5]).
The names of transitionscorrespond to theactions. C; isthe action of the client weakly caused by either A4; or A, whichever
occurs first. C, strongly caused by both A; and A,. An additiond transition, Cs, models the situation in which the client
may reuse the agents for further assignments. Note that due to the inherent AND causdlity of C, the client never issues a
new assignment to the agent before the previous one has been accomplished.

3.1.2 Signal Transtion Graphs

Interpreted Petri nets, where transitions represent changes in the values of circuit signals, were proposed independently as
specification models for Asynchronous Logic Circuits by [24] (where they were called Signal Graphs) and [2] (where they
were called Signal Transition Graphs, STGS). Both papers proposed to interpret a PN as the specification of a circuit defined
on a set of signalsY, by labelling each transition with an element of Y x {+, —}. A label y meansthat signd y; € Y
changesfrom0to 1, and y;” means that y; changes from 1 to O, whiley} denotes either y;f or y; .

AnSTG isaquadrupleg = (P, X, Z, A) whereP = (T, P, F, mo) isamarked PN, X and Z are (digoint) sets of input
and output signals respectively (Y = X U Z),and A : T — (X U Z) x {4+, —} labels each transition of P with a signal
transition. An STG isautonomousif it hasno input signals (i.e. X = 0).

Both [24] and [2] gave also synthesis methods to trandate the PN into a State Transition Diagram (called Transition
Diagram in [24] and State Graph in [2]) and hence into a circuit implementation of the specified behavior.

Given an STG ¢ = (P, X, Z, A) and the Reachability Graph ([me >, E, T, §) corresponding to its PN P (where §
labels each edge in E with atransition in T'), we define the associated State Transition Diagram (STD) S = {[mo >, E, A)
as follows. For each state (marking) m € [mo >, A(m) is avector of signal values (also denoted s™ for simplicity). We
say that vector s™ is a statelabel corresponding to the marking m. Obviously the STD labeling must be consistent with the
interpretation of the STG signal transitions. Let s denote the vaue of signal y; in s™. Each arce = (m,m') € E inthe
STD must obey the following consistency condition:

o if A(d(e)) = yi+, then s* = 0 and s}”l =1.
o if A(d(e)) = y; ,thens® =1 and s}"‘l =0.

1

e otherwises™ = s* .
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Figure 6: Signd Transition Graph for the arbiter in Figure 3

A finite, bounded STG isdefined as valid if its underlying reachability graph has a consistent labeling as defined above.

Figure 5 shows an example of an STG and the corresponding STD. Following the convention of [18], asignal valueis
denoted by 1x inalabd if itiscurrently 1 and afalling transition for it is enabled in the corresponding state. Similarly 0x
denotesasignd that iscurrently at 0 but enabled torise. 0 and 1 denote stable valuesfor the corresponding signal. Theinitial
marking of the PN in Figure 5.(a) (corresponding to the leftmost state in Figure 5.(b)) appears on the edge between y~ and
il:+ .

Another example of STG isshown in Figure 6. Thisisamode of thelow latency arbiter described in Section 2.2.3%. The
STG clearly demonstrates that after the arrival of either R1 or R2, the handshake R/G is set in parallel with resolving the
mutual exclusion inside the arbiter cell (by means of an internal mutual exclusion e ement whose output signals are denoted
as Al and A2 in Figure 6).

3.1.3 ChangeDiagrams

Change Diagrams, described more in detail in [33, 13, 12], are an event-based model for Asynchronous Logic Circuits that
bears some resemblance to Signal Transition Graphs, but has some interesting properties of its own.

The definition of Change Diagrams is based on two types of precedence relations between transitionsin Asynchronous
Logic Circuits.

1. the strong precedence relation between transitionsa* and b*, usualy depicted by a solid arc in the graphical represen-
tation of Change Diagrams, means that that * cannot occur without the occurrence of a*.

2. the weak precedence rel ation between transitionsa* and b*, usually depicted by adashed arc in the graphical represen-
tation, means that * may occur after an occurrence of ¢*. But b* may aso occur after some other transition ¢*, which
isalso weakly preceding b*, without the need for a* to occur.

4The figure is taken from [36], in which due to the further refinement of causality between the signal transition actions we have been able to improveon
both [26] and [9].



A Change Diagram (CD) istherefore formally defined asatupleD = (4, —,, M, O), where:

e A isaset of transitionsor events.

— C (A x A) isthe strong precedence relation between transitions.
e | C (A4 x A) istheweak precedence relation.

e M isaset of initially marked arcs.

e O isaset of so-called disengageablearcs.

For the purpose of circuit specification al transitions from A are labelled with signal transitions of a set of signals Y
similarly to signal transition labelling of STG. Therelations — and - are mutually exclusive (i.e. (a*,b*) € — impliesthat
(a*,b*) ¢ F and vice-versa), and dl the predecessors of atransition a* must be either of the strong type or of the weak type.
Hence the set of transitions A is partitioned into AND-type transitions (with strong predecessors) and OR-type transitions
(with wesk predecessors).

The firing rule of CDs is similar to that of PNs, with arcs playing the role of places and flow relation elements at the
same time. Each arc isassigned an integer marking which, unlike PN marking, can be negative. Initialy each arcin M has
marking 1, and each arc not in M has marking O.

e An AND-typetransitionisenabled if all its predecessor arcs have marking greater than O.
e An OR-typetransitionisenabled if at least one predecessor arc has marking greater than O.

When an enabled transition fires, the marking of each predecessor arc is decremented, and the marking of each successor
arc isincremented® A CD is bounded if the marking on each arc is bounded (both above and below) in al possible firing
seguences.

Disengageablearcsare “removed” fromthe CD after thefirst firing of their successor transition. They are used to represent
the initialization sequence of acircuit, and we will not enter into details concerning their usage.

Following [33], a State Transition Diagram S = (S, E, A) can be associated with aCD, as we did above for STGs. Let
S be the set of reachable marking vectors. Anarc (s, s') € E joinstwo marking vectors s, s’ € S if there exists atransition
y} € A that isenabled in s and whose firing produces s’. The labelling must be consistent, so for each arc (s,s') € F
corresponding to transition y; we must have:

e A(s); = 0 and A(s'); = 1 for an arc associated with y;' .

e A(s); =1 and A(s'); = 0 for an arc associated with y; .

e otherwise A(s); = A(s');.

A CD iscorrect if it satisfies the following conditions, ensuring that the above labelling is consistent:
o for al firing sequences, the signs of the transitions of each signal aternate.

e no two transitions of the same signal can be concurrently enabled in any reachable marking vector.
e the CD isconnected and bounded (i.e. the set S isfinite).

The main theoretical result concerning CD correspondence to semi-modular STD claims that

1. each semi-modular STD without transient cycles has a corresponding correct CD, and

2. each correct CD has a corresponding semi-modular STD [12].

A transient cycleinan STD isdefined as a cycle where at |east one variableis continuously excited with the same value. See,
for example, the cycle of stateslabeled: 0 0 * 0.000 — 0 * 10.0 * 00 — 0 x 1 * 0.100 — 0 % 00 % .100 — 0 % 01.10 * 0 —
0%01%.110 - 0% 00.110% — 0% 00.1%1 %1 — 0%00.01 %1 — 0% 00.001x — 0 % 0% 0.000 in Figure 14. In al states of
thiscycle signa b has value 0x.

CDs are useful in practice because of the availability of low-complexity polynomial time analysis algorithms to decide,

eg.

e whether agiven CD is correct, and hence it can be used as a valid specification of a semi-modular circuit.

5The marking of apredecessor arca* | b* of an OR-typetransition b* can become negative as a consequenceof afiring of b* dueto positive marking on
someother arc ¢* + b*. It canthen return to O when a* firesin turn. After the nexta™ firing the marking of arc a* + 5* can become zero or positive again.



e whether a given circuit has a distributive CD, and hence a distributive STD. Note that this analysis can be performed
by direct construction of the CD, without going through the exponential size STD ([12)]).

Furthermore synthesis algorithms from CDs to circuitsin various technologies are outlined in [12].

The main limitation of CDs however is their inability to describe choice among aternative behaviors, as modeled by
places with more than one successor in PNs. So adesigner faced with the description, for example, of a self-timed memory
element, must describe the various possibl e read/write cycles of each datavalue as an alternation rather than a choi ce between
them.

3.2 Problemsin modelling OR causality

Although both Petri nets and Change Diagrams are capable of modelling the causality paradigms of semi-modular circuits,
there are some problems, and even discrepancy, in the way these formalisms represent OR causality. Here we shall briefly
revisit the two examples of conflict-free behaviour from [34]. But let usfirst look at the problemsin modelling OR causality
by Petri netsfrom aformal side.

3.21 Problemswith using Petri nets

To show formally what are the difficultiesof modelling OR causality by PNslet usdefine the notion of observation equivalence
between PNsand CDs. Wewill think of such an equivalence asthe similarity of the partial behaviours generated by aPN and
aCD for a given subset of their transitions. In other words, if we establish a one-to-one correspondence between a selected
set of transitionsin aPN and aCD, the observabl e behaviour of the PN and CD, seen only from the viewpoint of the selected
transitions, must be exactly the same (up to renaming the selected transitions). For transitions that are not in the selected
subset the behaviour of both the CD and the PN can be different. |.e., if we delete (hide) from afiring sequence transitions
not in the selected sets, then the sets of firing sequences of the PN and the CD must be identical. This approach alows usto
have some freedom in modelling a PN using a CD and vice-versa.

The notion of behaviour in both PNs (CDs) can be defined in terms of the accepted languages. Suppose that transitions
of aCD D and of a PN P are labelled by the elements from some set B. These labels are not necessarily unique, i.e. a
number of transitions can have the same label. More formally, two partial 1abelling functions are defined, one on the set of
PN transitions T' and another on the set of CD transitions A (i.e, T — B and A — B). For STGs and CDs used in circuit
specification theselabelling functionsassign signal transition names, as described in Sections 3.1.2 and 3.1.3 but the definition
isnot limited to this application.

Givenalabelled CD D or alabelled PN P thelanguageaccepted by D or P, denoted as L(D) or L(P) , isaset of feasible
sequences of transition labels © that the model generates from itsinitial marking. Return to the example of the “cautious
client” in Figure4. Sequence A1, C1, A,, Co, Cs isfeasible and belongsto the language accepted by thisPN, while sequence
Aq,Cqp,Cy isnot feasible.

Denote by @ a CD or a PN under consideration. We now define the projection operator, denoted by | for the labelled
CDsand PNswith respect to a subset of thelabels B; C B asfollows.

1. If pisafeasible sequence for Q, then itsprojectionp | B; issequence p with al labelsfrom B — B; deleted.
2. If L(Q) isalanguage accepted by Q, then itsprojection L(Q) | B; isaset of sequences{p | B1 : p € L(Q)}

Two models, a CD D and aPN P, are observation equivalent with respect to the subset of labels By if L(D) | By =
L(P) | B:

The introduced equivalence relation is not very restrictive, because it compares behaviour only up to the “observable
points’ of specifications. Moreover, we have no restrictions on the corresponding number of transitionslabelled by the same
symbol in the models. Therefore one can model behaviour of some particular labelled transition from the CD by a set of
transitionsfrom the PN labelled by the same symbol, and vice versa.

Let us introduce a notion of observation isomorphismto disallow several PN transitions to be associated with one CD
event and vice versa. This notion is useful due to the following two reasons. First, to save compactness and locality of the
specification and, second, which is more important, to represent an OR-causal event directly, as asingletransitionin the PN
model, rather than through its“simulation” by thefiring of severd transitions, each occurring after its own OR-cause.

Twomodels,aCD D and aPN P, are observation isomor phic with respect to the subset of labels B; if they are observation
equivaent with respect to B; and each b € B; labelsthe same number of transitionsbothinD andin P.

Figure 7.(a) shows a simple CD D with an OR-event ¢, while Figures7.(b) and (c) show two different PNs P1 and P2
that are equivaent to D with respect to transitions {a, b, ¢} 7.

8 Feasible sequences of transitions are also called firing sequencesin Petri net terminology.
71n case of uniquelabels, we do not distinguish between atransition and its |abel.
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Figure 7: A Change Diagram with equivalent Petri Nets

InP1 the transition ¢ will fire after a or b have put atoken into the place p. If both & and & have fired, two tokenswill be
placed in p. To prevent ¢ from repestedly firing in the latter case, weintroduce the additiona “hidden” transition¢ to remove
the second token from p. Thus, in thefunctioning of P1 thefiringsof ¢ and ¢ alternate; ¢ firesfromthe “first’ tokeninp and ¢
from the“second”. P2 operatesin asimilar way, with the exception that in P2 the second token is not allowed to passinto p,
but is“delayed” ontransitionst1 and ¢2 by the choice place p’.

Itiseasy to seethat P1 isunsafe (for place p) and P2 is non-persistent (for place p’), moreover both PNs are non-free-
choice (e.g., for places p). Thisis not just a shortcoming of this particular example since it is intrinsic to the OR-causality
modelling in PNs as the foll owing Proposition shows.

Proposition 3.1 If a safe CD D is observation isomorphic to a PN P with respect to the set of live 8 transitions {a, b, ¢},
wherea | ¢, b - ¢, thenthe PN P iseither non-persistent and non-free-choice or unsafe and non-free-choice.

The proof of the propositionis given in the Appendix.

This proposition shows the difficulties of using PNs for the design of circuits with OR-causal behaviour. Indeed, the
equivaence notion introduced here is aimed at establishing the equivalence only with respect to some subset of signals.
Usually these are input and output signals of the circuit, and we are looking for different implementationsthat have the same
input-output behavior. In this case the signals that are not participating in the equivalence relation are the internal signals
of the circuit. If any signal is non-persistent, no speed-independent logic circuit can implement the specified behavior. The
non-safety and non-free-choice features of specification may also be a problem, since most known STG synthesis methods
work only with free-choice and safe descriptions. Note that al these unpleasant characteristic (non-persistency, non-safety,
non-free-choice) of PNs modeling OR causdlity is the consequence of their inherent AND causality paradigm, because the
equivalent CD is safe and correct by assumption.

The situation may however become worse if we have to deal with unsafe OR relations, as in the CD shown in Fig-
ure 8. In this CD the OR-event g+ can fire twice from the event d+ without any occurrence of b+ (e.g., the sequence
a+, d+, g+, e+, d—, g—, a—, d+, g+). Butif event b+ happens after a+, d+, g+, thenit will not trigger g+ and
thefiring of b+ will be “ignored”. In ordinary PNs there is no means to distinguish from which event the token is coming
to the common place p. But due to the operation rules of the unsafe OR, we have to distinguish the token that comes from
the second firing of d+ (it affects g+) and the token that comes from the b+ firing (it does not affect g+). Thisiswhy there
isno PN observation isomorphic to a CD with unsafe OR. However the CD in Figure 8 allows the following semi-modul ar
implementation:

a=ce+ag; b=e+a c=bc+ ab+ bed

e —aeg +adg+ce; d=ac+ae; g=d+ bce

The only way to represent the unsafe OR in PNsis to use the fact that any unsafe but k-bounded CD can be reduced to
a safe form by unfolding it into k& periods ([12]). Such solution, however, is not observation isomorphic because it implies
to construct a PN that is equivalent not to theinitial CD but to itsk period unfolding. Therefore more than one transitionin
the PN has to be in correspondence to one CD transition. This not only may lead to a significant increase in the size of the
specification, but also requiresthe designer to think interms of the unfol ded behavior, rather thanin terms of the more natural
and compact unsafe one.

8 A CD trangition isliveif it can be enabled infinitely many timesin the CD operation.
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Figure9: A CD without an equivalent finite Petri net

3.2.2 “Unbounded” cases

The above analysis was applied to the case in which both PN and CD were bounded and could represent the same behaviour.
Let uslook at a number of “unbounded” cases.

Thefirst example is depicted by asimple CD in Figure 9.(a) with unbounded arc marking.

Such an unbounded behaviour, in which the i-th (i = 1,2, ...) occurrence of transition ¢ is caused either by the i-th
occurrence of a or by the i-th occurrence of b, is represented in Figure 9.(b) as a CD unfolding ([12]). In the unfolding each
transition a® represents a unique occurrence of the corresponding transition a in afiring sequence of the CD (similarly for b
with respect to b and ¢ with respect to c).

It was first noted in [34], and later formally proved in [22], that there exists no finite PN representing such a behaviour®.

9The proof in [22] is based on reaching a contradiction from the assumption that there is afinite Petri net with exactly three transitions corresponding to

2%

c

Figure 10: A Petri net only seemingly equivalent to Figure 9.(a)
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Figure 11: A bounded Petri net with a Change Diagram that is not equivalent to it

The seemingly eguivalent PN shown in Figure 10 describes in effect a different behaviour. In it the i-th occurrence of
transition ¢ can be caused by any combination of pairs of the form a* and b*—* where k can be of any value between 0 and i.
The difference between these behavioursis obvious.

The CD isableto remember the number of occurrences of transitionsa and b, using the negative marking mechanism. So
if a firestwice, as represented in Figures 9.(c) and 9.(d) (empty circles represent negative marking on the arc between b and
¢), and then it stopsfiring, ¢ can fire again only after b hasfired three times, in order to “re-absorb” the negative marking. On
the other hand in Figure 10.(a), if a fires twice and then stops, ¢ can begin firing again as soon as b fires, because thereis no
way to remember an unbounded “debt” of tokens.

Another example isa PN shown in Figure 11.(a). It models an initially one-place buffer that becomes two-place when
transition b occurs. The behaviour is semi-modular, because no transition is disabled. Yet there is no connected equivalent
CD, because connected CDs can represent only semi-modular behaviors without transient cycles. In this example transition
b is continuoudly enabled during the cyclic firing of a and c.

The CD shown in Figure 11.(b), whose behaviour is only a subset (in terms of the corresponding languages build on the
set of firing sequences) of that of the PN in Figure 11.(a), has an unbounded negative marking on the arc between b and ¢
(Figure11.(c) shows such negative marking after the occurrence of b, followed by four occurrences of @ and ¢). Thedifference
in their behaviours begins after the occurrence of transition b.

In order to fully model this behaviour in the CD language, we have to represent the modes of one-place and two-place
buffer as separate CDs. Their composition would then require some additiona selection mechanism, which would however
lead us outside the descriptive domain of the original CDs notation.

Both these examples as well as the fact that CDs (at present [12]) cannot model processes with nondeterminism and
conflicts, clearly demonstrate the need for a unified formal notation that would be free from the shortcomings of both.

4 Causal Logic Nets: a Unified Model for Causality in Hardware

In this section we propose a new model that is based on the PN graph but has more general rules defining its dynamics. The
model, called Causd Logic Net, inherits the power of both PNs and CDs. We show that both these models are only special
cases of the Causal Logic Net. On the other hand, this model is a sort of “least upper bound” of PNs and CDs, so we hope
that itsanalysiswill not be drastically more complex than analysing its prototypes. Thetopic of analysisof Causal Logic Nets
is outside the scope of the present paper.

A Causal Logic Net (CLN) isaquadruple A = (T, P, F, 3) where:

e T isanon-empty finite set of transitions,
e P isanon-empty finite set of places,
e F C (T x P)U(P x T) istheflow relation between transitionsand places, and

e 3: T — F isafunction which assigns each transition a Boolean function from the set & of Boolean functions defined
onsubsets of P,i.e. F = {f|3P' C P A f: {0,1}/P'1 5 {0,1}}, insuchaway that V¢t € T : 8(t) : {0,1}!"tl —
{0, 1}. Note that here and further on we use standard notation for the sets of input and output places of a transition:
°t = {p|(p,t) € F}and t* = {p|(t,p) € F}. Anadogous notation will be used for the sets of input and output
transitionsof aplace: *p = {¢|(¢,p) € F} andp* = {t|(p,t) € F}.

It is thus clear that a CLN can be represented as a PN (bipartite) graph, in which each transition is associated with
a Boolean function defined on its input places. This function is called the enabling function of the transition. It can be

thetransitions a, b and ¢ in the CD shown in Figure 9, such that the set of feasible sequencesgenerated by the net is equal to that of the CD.
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written as an expression (with brackets) using the standard mathematical notation accepted for Boolean functions, in which
each place p € °t is associated with a litera (for simplicity, we shall use the same name p). For each transition ¢ the
enabling function 3(t) is evaluated according to the marking of the net. A CLN marking is defined similar to a PN marking
m: P — {..,-2,-1,0,1,2,...} except that the range of values is the full integer range. Thus, a marked CLN is a
quintuple A = (T, P, F, 3, mq), Where mq denotes itsinitial marking.

We say that a Boolean literal p associated with a place p € P is evauated with the logical 0 if mo(p) < 0 and it is
evaluated with the logical 1 if moe(p) > 0. A transitiont € T isenabled at a marking m if al its predecessor places are
marked in such away that the enabling function evaluatesto 1. For example, if for ¢ with *¢ = {p1, p2} and 3(¢) = p1p2 the
initial marking myg issuch that mq(p1) = 0, mo(p2) = 1 ¢ isnot enabled because 8(t) = 0. On the other hand, if we define
B(t) = p1 + p2, then the same initial marking makes ¢ enabled since now B(¢) = 1. The first situation corresponds to the
case of strong (AND) causality for ¢, whilethe second is an example of weak (OR) causality.

The remaining task is now to define the transition firing rule. First of dl, likein PNs, we say that any transitiont € T'
may fire under m (initially, m = my), producing a new marking m’, if it is enabled under m.

Firing Rule 1 (“Unconditional firing”). The new marking m' is defined in the same way asin ordinary PNs: Vp € P :
m'(p) = m(p)—1ifpe *¢t, pgt*, m'(p) = m(p)+1ifpet®, p& *°t,andm/(p) = m(p) otherwise. Thus, according to
thisrule some of the places, that may originally be marked by m with nonnegative number of tokens, can be marked negatively
(“tokensare borrowed”) inm/'.

Let us cal thisfiring rule Unconditional Firing because we impose no condition on its realisation except for the fact that
thetransitiont needs to be enabled. Later we shall introduce another firing rule which will take into account some condition;
then using both rules would enable us to model alarger class of behaviours.

With the effect of thisfiring rule we say that m/ is directly reachable from m through the firing of ¢, using the ordinary
PN notationm(t > m'.

We define all other notions standard for PNs, such as firing sequence, reachability, reachability set and reachability graph
in an ana ogous way.

We now give anumber of propositionsshowing the relationship between CLN and the previously used models. They are
quiteimportant for understanding why a particular class of CLNs can be the “least” possible generalisation of PN and CD.
The following proposition is rather obvious.

Proposition 41 ACLN A isaPN iff

1. for each transitiont € T its enabling function 3(t) is a positive unate conjunction on all itsinput place literals (3
assigns only AND expressions with positiveliterals), and

2. theinitial marking of each place is nonnegative.

Consider now a CLN A together with asignal transition labelling A : T — A, where A isa set of signal changes for a
set of signals Y. We can thus state that such an interpreted A is an STG iff its underlying CLN satisfies the conditions of
Proposition4.1.

An analogous proposition holds for the reduction of CLN to CD.

Proposition 4.2 A CLN A together with the signal transition interpretation A isa CD without disengageable arcs iff

1. for eachtransitiont € T the enablingfunction 3(t) iseither a positive unateconjunction or a positive unatedisjunction
of literalsassociated with all places from *¢ (3(t) can either be an AND or OR expression with positiveliterals),

2. for each placep € P the sets of predecessor and successor transitionscontain at most onetransition, i.e. |p*| < 1 and
|*p| < 1,and

3. theinitial marking of a placeiseither O or 1.

The proof of thispropositionistrivia. Furthermore, we can demonstrate that the CLN with the qualitiesgiven by item 1
of this propositionis also capable of adequate modelling of disengageable arcs. Asstated in[12], in well-formed CDs, every
disengageabl e arc connects a non-repeated transition with acyclic transition. In thiscase, the moddlling isvery smple. Itis
shown in Figure 12(a). For the genera case when the disengagesble arc is outgoing from a transition which can have other
outgoing arcs that are not disengageable we have to refer to Figure 12(b). It shows a CD fragment with such an arc together
withitsassociated PN fragment, that is observation isomorphic with respect to the set of transitionsin the CD.

Based on the notion of CLN we can define an updated version of an STG, by analogy with the origina version of STG
defined on a PN. It would however be more appropriate to give it a separate name, Causa Logic Signal Transition Graph
(CL-STG). Thus,aCL-STG isatupleg = (N, X, Z, A) where N isamarked CLN, X and Z are digoint sets of input and
output signalsrespectively and A : T — (X U Z) x {+, —} labels each transition of A with asignal change symbol.
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Figure12: Modelling disengageable arcsin Causal Logic Nets

We redefine the propertiesof a CL-STG by analogy with STGs. The most important of them isvalidity which allowsthe
congtruction of the STD model. Vaidity (finiteness, boundedness and consi stent Iabeling) remains unchanged for CL-STGs,
since the underlying reachability graph for a CLN is defined in the same way as for ordinary PNs.

In this paper we do not attempt to investigate all the problems of analysis of propertiesand classes of CLNs. Instead, we
have only demonstrated that this model allows the representation of any type of causality describable by means of Boolean
logic. Later, we shall show how a dight extension of the firing rule, making the resulting marking conditional upon the
enabling marking, can alow the CLN model to have the descriptive power of a Turing Machine. The same extension also
allowsto represent a non-determini stic behaviour with non-commutativity that can be useful in modelling such devices asthe
Fair Arbiter from [34].

5 Circuit Synthesis Examples

In this section we show two examples of synthesis of speed-independent circuits from initial specifications using CL-STGs.
These two examples also illustrate the two major types of OR causality that we originally claimed to be a major motivation
for the introduction of the CLN model.

Thefirst exampleisan event-based inclusive OR element (see [23]). The CL-STG description of thiselement is shownin
Figure 13.(a). The eement, having two inputsz, and z, and two outputsy; and y», behaves exactly as our “ cautious client”
described earlier. Starting from the initia states where al the signals are a 0, y; changes its output from 0 to 1 whenever
either of itsinputs changes from 0 to 1. The inputs cannot change until the other output y, has aso been set to 1, which
happens when both are at logical 1. Later, inputs can change back to 0 in any order, and the output v, follows the first of
these, while y, again ensures “safe’ operation by checking that both inputsare at logical 0.

We assume that in the CL-STG in Figure 13.(a) the 8 function for the transitions labelled with the changes of y; isa
simple digjunction between the two input arcs 1°. The 3 function of all the remaining transitionsis AND.

Figure 13.(b) shows an STD, which is semi-modular with respect to al signals. We can thus derive the circuit im-
plementation using any of the existing techniques (e.g., [24, 32, 4, 14, 12]). A set of Boolean functions for the circuit
is

n = zz2+ (21 +22)02
Y2 2122 + (21 + 22)Y2

10\We resort to the usual “ shorthand” notation style, in which places are explicitly shown only where they have more than one incoming or outgoing arc.
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Figure13: A Causal Logic State Transition Graph and its State Transition Diagram for the inclusive OR example

The second exampl e is a variabl e capacity buffer, which operates initialy as a one-place buffer, but upon the arriva of a
request signal becomes a two-place buffer. Note that we use the term “buffer” meaning its main control flow functionality,
without concerns about data path functions.

The buffering property is therefore characterised here by the number of times one handshake pair (the input of the
buffer) can change its value while the other handshake pair remains in the same state. A purely abstract model, where each
handshake was denoted simply by one symbol, was shown in Figure 11.(a). We shall draw upon this model in constructing
a corresponding “signalling expansion”, which is shown in Figure 14.(a). Here signalsa and ¢ stand for the outputs of the
handshakes. The inputsare “hidden” because they are smply delayed versions of the outputs. The environment is assumed
to be acknowledging the requests of the circuit, where the semantics of request is “the circuit is ready” (thisisthe so called
“passive environment” interaction [1]).

Note that the CL-STG in Figure 14.(a) is actually an STG because, in this example, we do not want to use the causa
logic modd for transition c+. This decision is due to the idea of keeping an extra token, arriving as aresult of thefiring of
b+, insidethe cycle. Had we used the explicit OR causality on e+ in conjunction with the adopted firing rule, the behaviour
would have been inadequate to our original intentions because the number of tokensin the cycle would not have increased,
so we would not have got the effect of atwo-place buffer. The purpose of this example is to illustrate a second type of OR
causality, as described in the next section.

The initidd STG mode is valid, but cannot be implemented directly in logic, because it first requires the introduction of
hidden state signals. For this purpose, we introduce three interna signals, z1, 2, and z3, in such away that their transitions
do not change the original ordering of the initia specification. This modified STG is shown in Figure 14.(b). The STD
generated by this STG is shown in Figure 14.(c). From thisSTD it is now possible to derive the Boolean functions of the
circuit implementation of the buffer (both software systems, SIS [27] and Forcage [12], produced the same solution):

a = Ti%3
2 = a-+T3E;
Tz = a+ T3
®3 = acei2z + (@1 + x2)es
c = bxyxs + axiT7s

6 TheTwo Typesof OR Causality

The above two examples demonstrate the two major paradigms in which OR causdlity can be distinguished. The first isthe
case when the actions, say a and b, that weakly cause another action, ¢, do not insist on the effect of their completion to be
applied to ¢ independently of each other. This means that for every possible occurrence of ¢ after only one of the causes, say
a, the other cause, say b, has no effect over the same occurrence of a. The unbounded case of such a paradigm was shown
in Figure 9.(a), for which we could not build a finite PN representation. Now, using CLNSs, the required model would be a
trivia re-drawing of the CD in Figure 9.(8) in such way that the transition labelled with ¢ must have its 8 function equal to
the simple digunction of the input arcs.
Let us call thistype of OR causality joint OR causdlity.
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Figure 14: The “variable capacity” buffer example

The other type, caled disoint OR causality happensto be in the example of the variable capacity buffer. It also took place
inthe example of thelow latency arbiter, whose STG was shown in Figure 6. Thistype of OR causality, inherited intact from
PNs, is caled digoint because we do not alow the tokens independently arriving in one place p from several cause actions
to be removed or annihilated. This additive effect of the PN marking mechanism is adeguate for the purposes of modelling.
A more transparent illustration of the fact that ajoint OR causality construct will not be able to represent this effect is shown
in Figure 15. If we analyse the behaviour of the CLN shown in Figure 15.(a), we will see that it is negatively unbounded
with respect to either of the dashed arcs. Furthermore, we cannot satisfy the requirement that in every execution sequence
the action labelled with ¢ has to occur as many times as the sum of the occurrences of actionsa; and a;. This requirement
would be necessary to guarantee, for example, that none of the requests to an arbiter arelost. A satisfactory CLN model of
this causality (inthis case an ordinary PN) is shown in Figure 15.(b).

To summarise, the above differentiation of the OR causality resolves the uncertainty as to how the designer has to specify
OR causdlity. Although the formal relationship between the class of semi-modular behaviours and CDs has been formally
shown (as well as the corresponding classes of PNs and STGs), there has been no clear recommendation for the designer as
towhat construct had to be employed for modelling OR causality. Itisnow clear that the demonstrated modelling mismatches

were dueto:
¢ theinadequacy of PNsto model joint OR causality and
¢ theinadequacy of CDsto model disoint OR causdlity.
On the other hand, using the unified model of CLNs as an underlying description tool for CL-STG, the designer can use:
e adisunctivetransition enabling functionfor joint OR causdity, or

e asingle place with multiple predecessors for digoint OR causality.
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7 Extensionsof Causal Logic Nets

7.1 Modelling Inhibitor Nets

There are two mgjor partsin the present day theory of Petri nets. One (by analogy with Theory of Relativity, it can be called
Specia Theory of Petri Nets) studies the model of ordinary P/T-nets, while the other (that can be called General Theory of
Petri Nets) deal swith the various model ling extensions of ordinary nets. Such extensions(e.g., Inhibitor Nets, Self-modifying
Nets etc.) increase the descriptive power of the original model (however, at the cost of losing the ability to analyse the model
initsmost general class). These generalisations bring the classical Petri net model to the level of Turing Machine [21]. Itis
known for example that Inhibitor Nets have such descriptive power[30].

It is worth noting that Inhibitor Nets have the same structure as ordinary nets, with the exception that some pairs (p, t)
in the flow relation F' can be declared as inhibitor arcs. Let denote such pairs by F?, separating them from F. As aresult
the enabling rule for such netsis dlightly different from that of ordinary PNs. A transitiont € T' is called enabled under
the marking m if Vp € *t : m(p) > 1 and Vp' : (p,t) € F' : m(p') = 0, where *¢ refers to the ordinary flow relation F'.
Informally, the transition can only be enabled if itsinput places connected by inhibitor arcs contain no tokens.

Thefiring rule of Inhibitor Netsis the same as for ordinary nets except for the fact that the inhibitor places incident to the
firing transition cannot be decremented of tokens (because these places are empty). In other words, some conditionischecked
before applying the marking re-computation during the transition firing.

In this section we demonstrate that similar functionality can be added to CLN to increase its descriptive power.

First of al, let us define this aternative firing mechanism.

Assume that trangition¢ € 7' is enabled under the marking m:

Firing Rule2 (“ Conditional firing”). Thenew markingm' isdefined inthefollowingway: Vp € P : m/(p) = m(p)—1
ifpe *tAm(p) > 1, m'(p) = m(p) + 1if p € ¢*, and m'(p) = m(p) otherwise. Thisruleis called conditional because a
place in the set of input places of the enabled transition is decremented only if it has at least one token. Thus, a net with this
firing rule never has a negative marking.

The class of CLNs, in which transitions can be associated with these two firing rules (but each transition must obviously
be associated with just onerule, either Rule 1 or Rule 2) will be called Extended CLNs or E-CLNSs.

Depending on which firing rulewe apply in each concrete case of transitionfiring we shall say that m' isdirectly reachable
from m through either Rule 1 or Rule 2. We shall denote it respectively as either m[t >%! m! or m[t >%2 m/. If it creates
no confusion we simply use the ordinary, unspecialised notation m[t > m/'.

The following proposition, which is quitetrivid, is now true.

Proposition 7.1 An E-CLN Nisan Inhibitor Net iff

1. each of its transitions is associated with a simple conjunction on its input place literals (some literals can be with
inversion), i.e. both AND and NOT Boolean functions can be used,

2. N hasan nonnegativeinitial marking, and

3. for every transitionthe applied firing ruleis Rule 2.
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Using thisproposition and the result of [30] about the modelling power of Inhibitor Nets, we can now easily state that the
class of E-CLNs has the same descriptive power as Turing Machine.

7.2 Modelling Non-commutative Behaviour

At this point we should stop introducing new modelling functionalities and examine more carefully some important semantic
properties achieved at the state-transition level by the features which have been added with the models of CLN and E-CLNSs.
Besides different types of causality captured in explicit way through the use of Boolean enabling functions, one important
aspect of behaviour that has been aff ected i sthe way in which non-determinism and behavioural divergence (or non-confluence)
can be modelled in CLN based descriptions.

The classical PN formalism is known to depict non-deterministic behaviour by using the notion of a conflict between
enabled transitions, which is achieved through the modelling of choice in PNs. The notion of a conflict, which reflects
arelationa approach to this phenomenon, has a precise operational characterisation of the net’s state transition semantics,
which is known as the property of non-persistency. The results of Keller [10] on the characterisation of confluence in
concurrent systems show that there are two fundamenta ways in which the divergence can be introduced into the model. One
is non-persistency, the other is non-commutativity.

According to Keller, a state transition system is called commutative if for every reachable state (marking, if we want to
applying the Petri net terminology) m and a pair of transitions¢; and ¢ enabled in m, such that they can fire in any order,
t1,t2 Or ta,t; (i.e. both firing sequences are feasible from m), the system reaches the same state m' no matter which is the
order of firing between ¢, and ¢,. A state transition systemis called deterministic if for each state m, the state m’ such that
m[t > m' isunique. A statetransition systemiscalled confluent if for all statesm, m' and m'’ such that m' and m" are both
reachable from m, then there exists a state m'"’ reachable from both m' and m"'.

The main result of [10] states that a state transition system is confluent if it is deterministic, persistent and commutative.

In this paper, we use amore genera property than commutativity, whichis called permutability. A state transition system
iscalled permutableif for every reachable state m and any pair of feasible sequences o; and o, of transitionsty, ¢, . .., t,,
such that o, isa permutation of o, the system reaches the same new state m’ through either of these sequences.

An interesting property of ordinary PNs as well as their powerful modelling extension, Inhibitor Nets is that they are
intrinsically permutable (they are certainly deterministic for a single transition, as well), which implies that the only way
to model global divergence in their state transition semantics is through adding non-persistency. The following proposition
statesthisinadlightly more genera form (i.e. the propositiontrivially impliesthe permutability of ordinary PNsand Inhibitor
Nets).

Proposition 7.2 1. For every CLN W the associated state transition system (i.e. Reachability graph) is permutable.

2. For every E-CLN A in which every enabling function is a simple conjunction consisting of simple literalsand literals
with inversion the associated state transition system (i.e. Reachability graph) is permutable.

The proof isgivenin Appendix.

This proposition rai ses the following questions. Can we model non-permutable behaviour with the new CLN formalism?
Why isthemodelling of such behaviour soimportant to us? In other wordshow isthisrelevant to the problemsof asynchronous
circuit design?

Thefirst question can be answered yes. The following exampleillustratesthisfact.

Consider a simple E-CLN shown in Figure 16(a), in which two transitions a and b are concurrently enabled. Let
B(a) = pip2 and B(b) = p1 + p2. The result of the firing of these transitions in either order is not the same however.
The Reachability Graph shows thisin Figure 16(b). The marking after the firing sequence a, b will be p5s whereas after the
sequence b, a it will be py, ps.

The question of usefulness of non-permutability is concerned with demonstrating a specification of some useful circuit.
One such example is the behaviour of aFair Arbiter that was originally presented [34]. Figure 17 shows the structure of the
system consisting of two Request modules (Iabelled with a and b) and Arbiter (marked with c¢), aswell as an STD describing
the system’s behaviour. Here, R, and R, denote two request signals from the Request modules, while A, and A4; denotethe
corresponding acknowledgement, or grant, signals generated by the Arbiter.

Itiseasy to see that thisSTD is not permutabl e because the behaviour is sensitive to the order in which the requests are
asserted. For the sequence R, Ry, the system enters state s7, while for the sequence Ry, R, it goesto s13.

Dueto the ability to distinguish two states labelled with the same binary code 1100 thismode is capable of remembering
thefact that the second request (e.g., R) must be served immediately after thefirst (e.g., R,) before the next activation of the
first request is served. This capability makes the Arbiter’s serving disciplinefair.

The key point in providing fairnessin themodel isin “splitting” the state, in which two requests are asserted at the same
time, into two different states. Thisis possible only by alowing the STD be non-permutable.

The problem of defining such a behaviour withinan event-based framework of the purely causal mode, isin the way how
to represent each signal transition by an individua event, so that the model will preserve theideaof concurrency between two
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Figure 17: State Transition Diagram for a Fair Arbiter

requests, R,+ and Ry+. The arbiter’s behaviour can thus be modelled in adescriptively “fairer” way by the E-CLN shown
inFigure 18.

Thisnet has exactly the same number of transitionsasthere are signal transitionsinvolvedinthe STD. It uses both features
that have been brought with the E-CLN modél. Firstly, the enabling functionsneed to involve AND, OR and NOT. Secondly,
the Firing Ruleis used to enable the modelling of non-permutative behaviour.

8 Conclusions

In this paper, we have demonstrated the role of OR causality in modelling asynchronous circuits. We have shown that within
the framework of only the PN or the CD model the designer has certain limitations which can be crucial in capturing some
useful semantic details. We have thus justified the introduction of a unified formalism, Causal Logic Nets, which is based
on the classical graphical background of Petri nets but augmented with the notion of a complex causal enabling function
defined for each transition of the net. We have been able to identify the class of Causal Logic Nets which is the least
possible generalisation of PN and CD. Such a class, as follows from Propositions 4.1 and 4.2, is formed by CLNs whose
transitions have enabling functions that are either nonnegative simple conjunctions or honnegative simple disgunctions of
literalsassociated with input places. This class of CLNs enables the designer to model two types of OR causality inherentin
circuit behaviour. The joint OR causality can be represented through the enabling function mechanism of transitions, while
the digoint OR causality can be modelled by net places and their input transitions.

This model can however be insufficiently powerful to represent more complex features, such for example as those of
extended Petri nets. By means of separating the notions of enabling and firing conditions we achieve the ability of having
the modelling power of Turing Machine (reducing our Extended Causal Logic Net to Inhibitor Nets, known to have such
descriptive power). Furthermore, the combination of a wider causa logic types and a more flexible firing mechanism results
in the ability to model global nondeterminism of the operationa (state transition) semantics not by the traditional notion
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Figure 18: Causal Logic Net model of a Fair Arbiter

of conflicts (non-persistency) but rather by the effect of non-commutativity. Here we used a more general property called
(non)permutability. The latter has allowed the representation of the behaviour of afair arbiter in a purely causal modelling
framework.

The following table summarises our classification of models and propertiesin terms of the essential features of the new
CLN formalism.

model/property CLN features:
enablingtype | firingtype
PN (STG) AND Rule1
PN(STG)+CD AND+OR Rulel
Inhibitor Net NOT+AND Rule2
Non-permutability | OR Rule2

Thus, for example, the modelling non-permutability requires both using OR causality and Firing Rule 2. Using either of
these features, without the other, appears to be insufficient.
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Appendix

Proof of Proposition 3.1

In the given CD D the following sequences are feasible due to the definition of OR-causa relations: {abc, bac, acb, bea}.
In any observation isomorphic PN P, however, the firing of transitionsa, b and ¢ can be mixed up with the firing of some
auxiliary transitionsthat are not used under the considered observationisomorphism. Wewill provethestatement by induction
on the number of “intermediate” transitions between a and ¢ firing and between b and ¢ firing.

Induction basis. Assume that P has no transitions*“between” a and ¢ and b and ¢. So thereis amarking m in which both
a and b are enabled and after firing any of them ¢ can fire. Consider the set of input places of ¢. It can be divided in two
subsets: P;, consisting of the places that contain some token under m, and Py, which consists of the places that are empty
under m. It iseasy to seethat any place p in Py isan output place of both a and b, because ¢ hasto fireimmediately after the
enabled a or b will fire.

Case 1. Assume that the firing of a does not disable b. Then &fter the occurrence of b two tokens will appear in each
p € Py andthe PN P isthusunsafe. Let us show that P isaso non-free-choice. Evidently, P; # 0, otherwise P generates a
feasible sequence a, b, ¢, ¢ which has no equivalentin D. Sincec isaliveevent in D, it can fire repeatedly. Moreover, P is
observation isomorphicto D, and therefore ¢ can aso fire repeatedly. This means that some time after the first firing of ¢ the
tokens have to appear in all the places of P;. Thiscannot be dueto the new firing of a or b because the occurrence of ¢ is not
mediated from a and b by other transitions. So the marking m' in which a or/and b is again enabled and all places from P;
contain atoken isreachable in P after thefirst occurrence of a, b and ¢. Recall that after thefirst firing of @ and b &l places
from P, contain two tokens. These places cannot be theinput places only to ¢, otherwise ¢ would be enabled in m’. Then the
sequence a, b, ¢ . . .¢, which has no equivalent in D (¢ can only occur in D due to the occurrence of either a or b) would be
feasiblein PN P. So at least one place p € Py, must be an input place to ¢ and to some other transition¢. This placeis not
free-choice because ¢ has at least one more input place that belongsto P, (P; # 0). Thus, our statement isvadid. PN P is
unsafe and non-free-choice.

Case 2. Assume that the firing of a disablesbd. Thusa and b are non-persistent and they share the common input place p.
Let us show that this place p isnon-free-choice. Suppose the opposite. Due to the observation isomorphism of PN P and CD
D and the existence in the latter of the feasible sequence a, b the sequence a, s, b hasto befeasiblein P, where ¢ ¢ s. By our
assumption the place p is free-choice and thusis the only input place to a and b. Therefore after sequence s both transitions
a and b are enabled. Hence we have the feasible sequence q, s, a in the PN P. No equivalent sequence exists inthe CD D,
because D issafe. Thusin Case 2 P is nhon-persistent and non-free-choice.

Induction step. Let both a and b be enabled under marking m and assume that al the transitionsthat can occur without a
and b and bring atoken to the input places of ¢ have already fired. Denote by P; (Po) the set of input places of ¢ that has (has
no) token under marking m. We are considering the case when the firing of ¢ after a (b) requires the firing of intermediate
transitions T, = {t%,...,t¢} (Tp = {t8,...,tL}). Let theset T, be minimal (no transition can be omitted from it). Clearly
we need to consider only non-persistent transitionsae and b, otherwise Case 2 in the Induction basis applies. After thefiring
of a and T, thetokenshave to arrive to all places from Po. Similarly for thefiring of b and T5.

Casel. T, N Ty = 0 and after thefiring of Ty, al transitionsfrom T3 can occur without firing of ¢. Then after the firing of
T, and T; dl the placesin Pg will contain two tokensat least. (Thisistrue even if some place p from Py is an input to some
transitiont from Ty, because both T, and T; by our assumption are realized independently and both add tokens to the places
in Py.) Now considerationssimilar to Induction basis Case 1 prove the statement.

Case?2. Let T, N Ty = {t}. Thefollowingfeasible sequence must exist in PN P:
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1. a,b,...,tandb,a,...,t asa andb are persistent.

2. a,...,t,bandb,...,t, aasT, can beredized without b and T3 without a.

Thusinstead of considering thetransitionsa, b and ¢ we can consider thetriplea,b, ¢ but the number of intermediatetransitions
from a to ¢ would be strictly less and we can use the induction assumption.

Case 3. Let T, N Ty = 0, but after the occurrence of a, T, some transitiont? € Ty, cannot fire. Let ¢2 be the first such
transitionin Ty. Consider the result of thefiring of s1 = a, T, b,¢%,...,8¢_,. Ast} isnot able to fire after s1 but is able
to fire after s2 = b,¢%,...,t2_,, then some place p which isinput for ¢¢ contains a token in the initial marking m and this
token is removed via the firing of a, T,,. It means that p is a common input place for t¢ and t; € T,. Consider sequence
s’ =a,tf,...,t9_4,b,8},...,t_;. Itiseasy to understand that after it both ¢? and ¢¢ are enabled and share the common

input place p with onetoken, i.e are non-persistent. Thisplace p cannot be free-choice because otherwiset ; would be enabled
intheinitial marking M, itsfiring does not depend on b and a and the set T, was not chosen minimal. n

Proof of Proposition 7.2

1. Consider a reachable marking m and a firing sequence o which is feasible under m. Let o bring A’ into marking
m'. Firing Rule 1, which is applied for A/, is similar to the firing rule used for ordinary PNs. Recall that thisruleis
unconditional (once thetransitionis enabled) and that we allow the marking can be negative. Due to thisrule, the new
marking for each place can be computed by the following well-known canonical firing sequence equation [21]:

m!(p) = m(p) + Y [0](t) — Y [0](),
te *p tep®
where [o](¢) is the number of occurrences of ¢ € T in sequences . The |T'|-dimensional integer vector [¢] which can
be built from all [&](¢) for firing sequence ¢ is called firing vector. It is clear that the value of this vector does not
depend on the order in which the transitionsinvolved in sequence o are actualy fired. Therefore, for any two (or more)
feasible sequences which are permutations of one another, this value will be the same, and hence all such sequences
will bring the net into the same marking. The Reachability Graph of such aCLN is permutable.

2. Consider an E-CLN in which each enabling function is a simple conjunction consisting of literalsin direct or inverted
forms. Let ustake an arbitrary reachable marking m and a sequence o feasible under this marking. Let the net reach
marking m' through o. Note that if & contains only transitions whose enabling functions are positive (no inverted
literas), then no matter which firing ruleis used for transitions, the argument used in the previousitem will bring usto
the fact that every feasible permutation of & will also bring the net into m’. Indeed, even if Firing Rule 2 is applied,
thisrule has the same effect on the marking change process as Rule 1 because each transitionis fired when all itsinput
places contain tokens.

Let o have a least one transition ¢ whose enabling function 3(¢) is a conjunction containing inverted place literals.
Denote the subset of *¢ whose literalsare inverted in 5(t) by ( *t)*.

Assumethat ¢ isfired under marking m, and this bringsthe net into marking ms.

Consider two possibilities concerned with the firing rule for ¢. If ¢ is assigned Firing Rule 1, then again the marking
my Ccan be calculated unconditionally, decrementing and incrementing the placesin *¢ and ¢* in a unique way.

If ¢ isassigned Firing Rule 2, then m, can be found asfollows: m3(p) = mi(p) + 1 if p € £*, ma(p) = m1(p) — 1 if
p € *t Am(p) > 1, and mz(p) = m1(p) otherwise.

Now, sincet canonly fireif itisenabled, anditisenabledif Vp € *t\(*t)* : mi(p) > 1 andVp € (*t)* : my1(p) < 0,the
abovefiringrulefor thenew markingm, can berewrittenasfollows: mz(p) = mi(p)+1ifp € t*, ma(p) = m1(p) -1
ifpe *tApe *t\ (°t)", and my(p) = mi(p) otherwise.

Since the set (*t)* is aways fixed for each a transition regardiess of the marking under which it can fire, ¢t always
changes any such marking in the same way. |.e., it decrements and incrementsits *¢ and ¢* in a unique way.

Thus, no matter which firing rule is used, any ¢ decrements and increments its *¢ and ¢* in a unique way. Now, by
induction on the length of &, we can rewrite that the canonical firing sequence equation for our CLN A in adightly

modified form:
m'(p) =m(p) + Y [cJ&)— > I[ol(®),
te®p tep\(p*)?
where (p*)? denotes the set of those output transitions for p whose functions contain literal p in the inverted form.
Indeed, since set ( *¢)* isdefined uniquely for eacht € T, the set (p*)* isaso uniquefor esch p € P.

Therefore the new marking m’ is determined only by the value of thefiring vector and not the order in which transitions
fire. The Reachability graph isthus permutable. "
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