

 ISSN 2078-7707

ПРОБЛЕМЫ РАЗРАБОТКИ ПЕРСПЕКТИВНЫХ
МИКРО- и НАНОЭЛЕКТРОННЫХ

СИСТЕМ (МЭС)

PROBLEMS OF ADVANCED MICRO- AND
 NANOELECTRONIC SYSTEMS DEVELOPMENT (MES)

СБОРНИК ИЗБРАННЫХ ТРУДОВ НА АНГЛИЙСКОМ ЯЗЫКЕ
VII Всероссийской научно-технической конференции МЭС-2016

Часть II

SELECTED ARTICLES
of the VII All-Russia Science&Technology Conference MES-2016

Part II

 Федеральное государственное бюджетное учреждение науки
 Институт проблем проектирования в микроэлектронике

 Российской академии наук
 Institute for Design Problems in Microelectronics

 of the Russian Academy of Sciences

Москва - 2017

ИП
ПМ

VI

CONTENTS

Verification and Testing

А.А. Sokhatski
Practical Aspects of Design Verification of Complex Chips.. 2

S.G. Mosin
Generation of the Test Programs for Mixed-Signal
Integrated Circuits Using the Automata Network …….. 7

A.D. Tatarnikov
Combinatorial Test Program Generation for Microprocessors Based on Formal Specifications of
Instruction Set Architecture ………………………………... 10

K.A. Zhezlov, Y.S. Kolbasov, A.O. Kozlov, A.V. Nikolaev, F.M. Putrya, S.E. Frolova
Automation of Test Environment Creation Aimed at IP-Cores and SoC Development,
Verification and Performance Analysis ... 16

M.S. Ladnushkin
Reducing Area and Increasing Compression Ratio of Scan Compression System for Digital VLSI
Using Stuck-at Fault Model …….…………………………………………………………………………. 22

V.G. Ryabtsev, А.А. Shubovich, K.V. Evseev
Diagnostic Tools and Configurable Digital Systems on Crystal Portable Integration …………………….. 28

I. Pechenko
A Method for SoC Protocols Specification and Validation ……………….………………………….......... 34

High-performance Computing Microelectronic Systems

D.N. Zmejev, A.V. Klimov, N.N. Levchenko, A.S. Okunev, A.L. Stempkovsky
The Change of Computation Paradigm and Programming Model - the Future of New Supercomputers …. 40

D.N. Zmejev, A.V. Klimov, N.N. Levchenko, A.S. Okunev
Hash Unit as One of Computations Control Elements in Parallel Dataflow Computing System ………….. 46

Yu.A. Stepchenkov, Yu.G. Diachenko, D.V. Khilko, V.S. Petrukhin
Recurrent Data-Flow Architecture: Features and Realization Problems .……………………………........... 52

D.V. Khilko, Yu. A. Stepchenkov, D. I. Shikunov, Yu. I. Shikunov
Recurrent Data-Flow Architecture: Technical Aspects
of Implementation and Modeling Results ………….…………………………………………………….…. 59

A.V. Klimov, A.S. Okunev
A Graphical Dataflow Meta-Language for Asynchronous Distributed Programming
…….. 65

Authors index ………………………………………………………………………………………………... 72

Selected Articles of МES conference, 2017, part 2 © IPPM RAS

Recurrent Data-flow Architecture:

Features and Realization Problems

Yu.A. Stepchenkov, Yu.G. Diachenko, D.V. Khilko, V.S. Petrukhin

The Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of

the Russian Academy of Sciences,

ystepchenkov@ipiran.ru, diaura@mail.ru, dhilko@yandex.ru, cokrat2@rambler.ru

Abstract — Results of development of the multi-core recur-

rent data-flow architecture (MRDA) focused on effective

implementation of digital signal processing (DSP) algorithms

are presented. Principal differences between MRDA and

existing computer architectures are shown. Such differences

make it possible to process the instructions in almost half the

normal time using singular self-sufficient recurrently repre-

sented data-flow. Additional mechanisms that enhance the

performance of computations for a number of DSP algo-

rithms have been listed. Some of the proposed mechanisms

can also be used in DSP systems of traditional architecture.

Keywords — data-flow architecture, recurrence, digital sig-

nal processing, match memory, superscalarity.

I. INTRODUCTION

The relevance of computing architectures based on da-
ta-flow paradigm development is undoubted, since it can
potentially provide much higher performance comparing to
conventional von Neumann architecture. However, effec-
tive implementation of data-flow architectures (DFA) en-
counters a number of significant problems, such as the
implementation of recursion, cycles, iterations as well as
working with constants and others.

In a number of foreign experimental projects conducted
from the early 1980s to the mid 2000s, where dynamic
data-flow (DF-D) architectures have being developed, ef-
fective ways to solve these problems had not been found
[1-3]. Disadvantages inherent in DFA:

● Hardware complexity and comparison time of tagged
markers in the Match Memory (MM) are quite high.
Therefore maximum possible architecture performance
could be achieved by implementing Match Memory in the
form of Associative memory. However, the large amount
of memory required to store pending tokens makes this
approach problematic.

● The degree of parallelism in programs being execut-
ed is out of control. A number of applications can generate
more of concurrently executable fragments than the capa-
bilities that hardware provides. This results in decrease of
real performance.

● Sequential sections of code are executed inefficiently.
The loss of time in these areas due to the comparison of tagged
markers, their exchange, formation and access to various struc-
tures of the memory device cannot always be compensated by
simultaneous processing of data streams in parallel sections of

the code.

● Theoretically an amount of concurrently running
loop iterations and procedures has no limitation. This leads
to the growth of hardware complexity due to an increase in
the size of the tags and the time-loss for their communica-
tion over the network.

● A wide variety of memory types, such as: Match
Memory, Overflow memory (block of deferred markers),
Program Memory and Constant Memory, Memory of
tagged markers and others, - makes memory management
very complicated.

● It is impossible to use register structures with the
same efficiency as in a conventional multi-processor sys-
tem.

An effective solution of these and other problems not
mentioned is possible only on the basis of fast and capa-
cious Associative memory (AM), which will be the most
hardware and energy consuming resource. Therefore AM
is only useful for systems of mass parallelism.

In Russia, serious results in the development of univer-
sal high-performance systems based on data-flow princi-
ples were achieved by a team led by Academician Burtsev
V.S. (see, for example, [4]). After the death of Academi-
cian Burtsev V.S. and the transition of most of his team
from the IPI RAS to IPPM RAS, work on improving this
data-flow architecture has been continued there.

Attempts to use the data-flow paradigm in the field of
digital signal processing also have a long history [5-8]. The
authors of these studies note that the principles of the DFA
and the requirements of the DSP algorithms are well com-
bined with each other in applications that are characterized
by a high degree of internal parallelism. The main con-
straining factors for the wide practical use of such integra-
tion are the high price of multi-processor implementations
as well as the performance losses in the off-chip imple-
mentation of the communication interprocessor network.
For most DSP applications, the dynamic allocation of data
is unnecessary, since the predictability of program execu-
tion time ensures the viability of static methods of their
distribution.

At the Institute of Informatics Problems of the Federal
Research Center "Computer Science and Control" of the
Russian Academy of Sciences the concept of a fundamen-
tally new Multicore Recurrent Dataflow Architecture
(MRDA) has been developed. The architecture is initially

52

mailto:ystepchenkov@ipiran.ru
mailto:diaura@mail.ru
mailto:dhilko@yandex.ru

developed as a specialized one, intended for realization of
parallel computing processes of signal processing in real
time. It is based on a recurrent-dynamic computational
paradigm, which can be considered as the improvement of
a data-flow paradigm, but built on another principle, name-
ly, on the principle of self-contained, recurrently com-
pressed data (RD).

II. FEATURES OF COMPUTATIONAL PROCESS

ORGANIZATION IN MRDA

The proposed architecture is unconventional and radi-
cally different in its main points not only from the classical
von Neumann architecture, but also from other non-
traditional parallel architectures, in particular, from data-
flow-based architectures.

Existing traditional and non-traditional computer archi-
tectures have two basic flows: flow of instructions and
flow of data. In MRDA both flows are combined into one
single ″self-extracting″ flow of self-sustained data that
encapsulates data itself as well as control and service in-
formation needed for processing them. A clear graphical
representation of the comparative qualities of the architectures
in question is given by their comparison, shown at Fig. 1 and
Fig. 2, by following criteria:

 - memory organization and computational process ini-
tiation (Fig. 1);

- number of steps required to execute the instruction
(Fig. 2).

The instruction flow being extracted from program
memory of CPU (instruction flow has a primary role) ini-
tiates computing (arrow ʺ1ʺ in Fig. 1, а). The program-
initiator of the process involves data for processing: a sec-
ondary flow (arrow ʺ2ʺ in Fig. 1, а). The initiating program
is fully stored at instruction memory in static. Thus there is
a problem to identify the moment of data preparedness for
computing. We have classified such computational model
as Control Flow/Static (CF/S).

Second fundamental class consists of DFA. These ar-
chitectures use same memory partitioning as CF/S models,
but in contradistinction to CF/S the data flow initiates
computing (data flow has a primary role – arrow ʺ1ʺ in
Fig. 1,b). Furthermore data memory stores data (operands)
with additional functional fields (tagged fields) in its cells.
Thus total amount of memory used is approximately the

same. Generally functional fields are used to store infor-
mation about instruction address to be extracted from pro-
gram memory. This instruction defines actions that have
to be performed on the incoming components of the pair
(arrow ʺ2ʺ at Fig. 2,b). The instruction set is fully stored in
static form as well. Therefore such model was classified
as Data-Flow/Static (DF/S).

MRDA belongs to the class of DFA but unlike them it

operates with self-sustained data. This type of data con-
tains information about: the component of the pair to be
matched; instruction to be performed on the pair; address
where the operation result has to be stored. There are sev-
eral possible destinations for the operation result that can
be: stored at inner registers of current CPU for later use;
transferred to other CPUs through the communication net-
work; stored into Match Memory for later use; transferred
to the external environment as an output result.

The main property of MRDA has been called
″recurrence″, which is the dynamic evolution of computa-
tional process. We define dynamic evolution as a func-
tional transform of originally compressed tagged fields
taking into account possible variety of transforming condi-
tions. Following this definition in terms of self-sustained
data each following step is calculated as a function of pre-

 Instr. Instr. Data Instr. Result

 select decode reading execute writing

 1 2 3 4 5

 1 2 3 4 5

 Tag Instr. Instr. Instr. Result

 compare select decode execute writing

Fig. 2. Instruction execution in compared architectures

a) – c) – identically to Fig. 1

 Tag
 compare,
 Instr. Instr. Result
 decode execute writing

 1 2 3

a)

b)

c)

Fig. 1. The principal differences of compared architectures

a) traditional (CF/S), b) data-flow (DF/S), c) MRDA (DF/SD)

Data

Data, tags

Instruction Instruction

1
2

CPU

CPU
Data, tags

Program memory

(secondary flow)

 1 3
2 3

Tagged data memory

(primary flow)

b) a)

Program memory

(primary flow)

Instruction

Data memory

(secondary flow)

Data

1

2

CPU

&

TT

Data (self-sustained)

Data (self-sustained)

Self-sustained data

memory

(one single flow)

c)

53

vious step during evolution of computational process.
Thus, the original instruction flow is folding recurrently,
thereby allowing to drastically reduce the overhead asso-
ciated with storing of computational process planned
trace.

In contradistinction to DF/S tagged data are also self-
sustained. Such tagged data are called recurrently unfold-
ing and contain compressed information to keep compu-
ting based on recurrence principle. Within the MRDA
″Tag Transformer″ (TT) component is included as a part
of CPUs. It provides recurrent self-extraction functionality
of computational process. TT is initialized by the operands
that have to be processed at CPU, it operates in parallel
with CPU and determines next computational step action
(transforming functional fields). This device is a relatively
simple (in terms of hardware costs) combination circuit
that contains the means for configuration (in necessary
cases) on the subject area.

Match memory of MRDA does not contain program
being executed in traditional meaning. There are only
original values of functional fields that are recurrently
unfolded by TT dynamically. Thus, MRDA was classified
as Data-Flow/Static Dynamic (DF/SD). In order to execute
the algorithm, you must specify the initial values of the
functional tags. Such representation of program in the
MRDA was called a capsule.

In order to obtain the instruction result in CF/S and
DS/S following sequence of steps 1-5 is performed (see
Fig. 2a and 2b respectively). As for DS/SD architecture,
the amount of steps is reduced to its logical minimum of 3
as shown at Fig. 2c. Moreover, a total volume of memory
resources required and an amount of data transfers between
functional blocks of a computational system are also re-
duced. Thus if the reduction in the number of steps in
MRDA to 4 is obvious (there is no need to select the in-
struction), then the possibility of combining the tags com-
parison and the instruction deciphering procedures at one
step will be shown below when considering the structure of
a recurrent operational unit (ROU).

III. HYBRID TWO-LEVEL OPTION OF MRDA

IMPLEMENTATION

The historical experience of the computer architectures
development testifies [9] that the new architecture devel-
opment may fail for the following reasons:

• if it is based on extremely complex hardware mecha-
nisms to support its intended computational model;

• if it is incompatible with existing computing envi-
ronments;

• if it ignores the programmability problems.

The results obtained on various implementations of
ROU convincingly testify that it does not require compli-
cated hardware mechanisms to support the inherent Cap-
sule programming model. As for the second statement, the
compatibility with existing computing environments is not
implied within the development of ROU. On the contrary,
it involves the development of a unique computing envi-

ronment, that takes into account the specifics of the
MRDA at the maximum extent.

The search for a compromise solution, that includes
compatibility with existing computing and hardware envi-
ronments, is possible when certain requirements are met.
Primarily it is required to support the data-flow nature of
the computational process implemented in the ROU

Implementation of this approach is possible on the basis of
a hybrid architecture variant of a recurrent signal processor
(HARSP): a processor with a reduced NIOS2 instruction set
and FPGA organized as Programmable Logic Device (PLD)
within the Altera family of chips, code-named Stratix IV [10]
(see Fig. 3).

The structure of HARSP includes a control level with
control processor (CP), based on von Neumann architec-
ture, and an operational level (ROU) that consists of: a
distributor (controls data distribution), four single-type
recurrent computing blocks (CB) and an interface for
interprocessor exchange. In turn, each CB consists of:
match memory, computing device (based on 16-bit ALU
and multiplier with accumulation MAC) and a tag trans-
former.

As an interface device between CP and ROU (the data
stream between them is of an intensive nature), it is pro-
posed to use a special type of dual-port buffer memory
(BM) implemented in the FPGA. Simultaneous reading of
the capsule from one port and recording the computational
results at another port will surpassingly allow balancing the
data flow between the control processor and four compu-
ting devices.

The control level of HARSP is entrusted with follow-
ing functions: preliminary preparation of capsules, imple-
mentation of consecutive parts of the executable program
and recording of the results at one BM port. The operation-
al level of the RSP provides: reading of capsules that are
ready for execution, parallel calculations in the CB and
recording the results of calculations at another BM port.
Also the introduction of a dual-port BM into the RSP
structure will make it possible to exclude the time-loss for
moving data between two levels of the HARSP architec-
ture.

Buffer memory is designed to store capsule patterns. In
data exchange mode between BM and ROU the dual-port
implementation of memory provides simultaneous reading
and writing from the ROU side.

Attribute memory (data ready bit, DR-bit) controls the
availability of data in the capsule patterns. If the data at the
specified address in the BM is ready for reading, then the
DR-bit is set to '1', otherwise to '0'. In data exchanging
process between BM and ROU, it becomes necessary to
simultaneously change the attributes at two addresses
(dropping DR-bit for the read data, and setting up DR-bit
for the received data). The dual-port organization of the
BM provides simultaneous recording at port 1 and reading
from port 2 or one-time recording at port 1 and port 2.

54

Fig. 3. HARSP structural scheme

MM – match memory; DR – data readiness;
ROU – recurrent operational unit; TT – tag transformer;

M – multiplier; AU – arithmetical unit

Control processor (CP)

Distributor

MM0

ALU16
M&AU40

TT

MMn

Data exchange interface

CBо CBn

МХ

Buffer memory (BM)

63 ... 56 55 … .. 00

● ●

R

O

U

DR

ALU16

M&AU40
TT

There is a restriction of maximum acceptable length for
BM activity cycle that equals to four and it is defined by
the operating time of the slowest stage of ROU pipeline.
Apart from this restriction, there are several requirements
that have to be met by BM:

• it should store and operate with operands that have
56-bits (extended to 64-bits) size;

• it should be able to send into ROU up to 4 operands
for one cycle;

• it should be able to write up to 4 operands sent from
ROU in a single cycle.

In order to operate with required performance BM has
been separated into 8 banks (8-bits each) that are working in
parallel (B0 – B7).

The capsule can contain, and ROU can accept, four

types of operands (Table 1). These operand types are indi-
cated in the mandatory field for all operands – [t].

Table 1

Operand types in ROU

t~field Operand type description

Symbol Code

E: 0 Empty

A: 1 Assistant

C: 2 Control

D: 3 Data-containing

Only data-containing operands can carry input data (so
this type is called D-type) to be processed during the com-
putation. This type of operands can be processed and re-
ceived by all ROU modules.

The empty operand (E-type) has no structure, doesn’t
carry information and is not processed in ROU (it has a
debug purpose).

Assistant operands (A-type) contain service infor-
mation that does not affect the organization and the course
of computational process. Minimal set of these operands
includes: capsule terminator, data terminator, global con-
figurator (configures ROU as a whole), initializer and
template. Each of them has its own specific format and is
intended for setting up one of the ROU units.

Control operands (C-type) control the progress of the
computational process, coordinate the work and configure
some modules of the structure. Examples of C-type oper-
ands are: the configurator of a separate section, it also
performs the tuning of TT, if necessary; the brake, it serves
as a software stop function; the driver, it reinitializes the
computational process; there are also operands of uncondi-
tional and conditional transitions.

Capsular programming style is implemented in HARSP,
where for each algorithm a capsule template is developed, the
general form of which is presented in Table 2.

Table 2

Capsule structure

№ Operand Structure Description

1 Ani 101%Ncpx@Ntvad Input capsule identifier

2 Adi 131%Nc1 Data set identifier

3 Acg 151%Cxpcres Global configurator

4 Ai 160%I0nis%I1nis Data set initializer

5 Aso 110%Stn[OcuSmDrse] Out data starter

6 Atm (0-3) 161%Tcuhxmrse[OuShmD_] Template (for sections 0-3)

7 Ccs 200@Cjlder[0cutShmD0001se] Configurator of a separate section (for sections 0-3)

8 Di 32@sV0_[OcutShmDrse] Data-containing operand V0

9 Di 32@sV1_[OcutShmDrse] Data-containing operand V1

10 Asi 111%St[OcutSmDrse] Input data starter

11 Di2 + Di4 32V2_Sh_V3_Sh_V4_Sh Data-containing operandsV2,V3 and V4

12 Di(n-1) + Di(n-4) 32Vn-1_Vn-2_Vn-3_Vn-4 Data-containing operands Vn-1 and Vn

13 Az 141%Ncp@Ntvad Capsule terminator

55

mailto:101%25Ncpx@Ntvad

Any capsule template contains a set of assistant and
control operands that have their DR-bits set up in the BM,
as well as a series of constants whose values are known in
advance. Therefore, as soon as the CP initializes the capsule
execution, the operands with DR-bits being set up begin to be
processed by ROU.

Data-containing operands have following notation and
subfields t@sV0_[OcutShmDrse], where V is the data val-
ue field (see Table 3):

● subfield of the data dimensionality @s (16/38 bits);
● subfield of the operation of the computing device [Oc];

● subfield of the mode of using the operand [Ou] in the
MM;

● subfield of operation type [Ot]: normal, cyclic, transition
initiation, constants reading, etc .;

● subfields of match codes [Shm] in the MM;

● replication mask subfield [Dr];

● subfield of transfer of the operand between the sec-
tions [Ds];

● subfield of transfer of the operand to the Em-bus [De].

Table 3

Data-containing operand structure

Figure 4 shows the detailed structure of the basic version of ROU. In addition to general-purpose devices (Distribu-
tor, Collector, Implicator and others), Fig. 4 shows the structure of one of its four identical sections.

Control part Functional part Recurrent functional part

Data part

00000000 T ~~~ @s Dr Sh Sm Ou Oc Ot Ds De Sm Ou Oc Ds @s V

00000000 11 000 0

8 2 3 1 4 1 3 2 5 3 2 1 3 2 5 2 1 16

63...56 55...54 53...51 50 49...46 45 44...42 41...40 39...35 34...32 31...30 29 28...26 25...24 23...19 18...17 16 15...0

Fig. 4. Basic version of ROU structure

Branch memory

t[ShmDr+T]

Em-operand

Cac

:

A- operand

t[ShmDr+T] t[ShmDr+T]

Collector Distributor

Iterator

Accumulator

Shuffler

Tag register

Indirect replication register
 Intermediate results explication

register

MM

Tag transformer

Register of MM

Explicator

Key

Multiplexer

Implicator

МX

МX МX

From control level (BM) At control level (BM)

S

x

m

+

T

О-operand

S

x

S-operand

I-grape
t[Shm+T]

Matched

Operands
t[Shm+T]

P-grape

Е-grape

t[ShmDr+T]

E-grape
t[Shm+T]

M-grape
t[Shm+T]

t[Shm+T]

 H- and F- t[Shm+T]

[ShmDr+T]

]

Multiplier & AU40

CM_S(16) CM_SR(56)

 Tags Sh Sm Data

DRAM

Juggler

I. А

 ЛУА

R- L- and

ALU

H- and F-

56

Distributor - is a FIFO-buffer that receives sequences
of operands with DR-bits being set up, which are contained
in capsules (BM). Distributor is the source of the original
S-operands that appear at its output in the order in which
they are located in the capsule. The task of the Distributor
is not only to supply operands to the input of the "Explica-
tor" module, but also to analyze the type of the operand at
its output (in the top cell - the FIFO vertex) and to distrib-
ute some types of the assistant and control operands to
their destination. FIFO-buffer depth of the Distributor may
vary.

Some ROU components process not only single oper-
ands, but packages of operands that have been called
ʺgrapesʺ. Therefore, before processing, the operands from
the capsule must be transformed into "grape" form. This
transformation is called the explication of "grapes" and is
performed by the Explicator module. In fact, Explicator is
the Distributor's sub component that is preparing "grapes"
for transferring at corresponding data routes of sections.

Explication itself is a complex operation, because it in-
volves replication (multiple reproduction or "vectorization")
of the operand and strictly speaking explication (forming a
"grape"). For replication in the functional subfield [Dr] of
all source operands, an explicit replication mask is provid-
ed. Each bit of the mask corresponds to a specific section;
therefore being set up as "1" it directly specifies the section
into which the operand is to be sent. This type of mask has
been called direct replication mask accordingly. Operands
with the same value of direct replication mask are always
sent to the same sections. In case when [Dr] subfield has
zero value within ROU a set of special mechanisms of in-
direct replication has been defined. Thus, this type of mask
has been called indirect replication mask.

A prepared "grape" (called I-grape) is sent to the MM
modules. The MM module is available in each section of
ROU and is capable of performing the following functions:

● selection and commutation of "grapes" that are be-
ing memorized;

● operands storing;

● selection of operands whose subfields [Shm] have
coincided. While the pair component is being read from the
MM, the operation code subfield [Oc] of the operand that has
been sent into register of MM, can be decrypted. This ensures
the simultaneity of the actions at step 1 for the MRDA (see
Fig. 2).

Within ROU the computing block has been called "Com-
puter" and it is able to perform following operations:

● arithmetic-logical functions over the operands data,
using the information coming from the L and R buses:
L – tV [] and R – tV [Oc];

● recurrent unfolding of functional fields, using in-
formation supplied to the R-bus: [Ocut_ShmD_] at Tag
Transformer.

The resultant E-operands are either stored in one of "Com-
puter's" registers (A, B or C) or returned to the MM via E- or
Em-buses for further participation in the calculations (interme-
diate results) or for output to the control level using Implicator
and Collector components. These results may be classified as

final output or as temporary data to be reused at ROU.

As in standard digital signal processors, "Computer"
contains a MAC hardware block that allows to multiply
two 16-bit operands and to accumulate the multiplication
result with value containing in one of the two internal 40-
bit registers in one clock cycle. The dimensionality of 16
bit for input data is enough for a number of applications in
the field of speech processing. For applications where 16
bits are not sufficient, the ROS architecture provides 38 bit
input and output operands.

In addition to multiplication with accumulation, MAC
unit is able to execute the commands of the arithmetical,
logical shifting and rounding results. CB also contains a
16-bit arithmetic logic unit (ALU) that performs basic
arithmetical and all logical commands.

Each of the listed nodes and registers of CB represents
an independent hardware resource, idle time price of which
is quite high. Therefore, the CB within the ROU is able to
execute in parallel up to two instructions per clock cycle,
i.e. it has superscalar architecture.

A computing device is called superscalar (the term
was first used in 1987), if it simultaneously executes more
than one scalar command. Thus, the implementation of
CB with superscalar architecture made it possible to
achieve parallelism at the instruction level.

The instruction set of ROU has been expanded with the
special multi-cycle operation "FFT" (basic operation for
Radix-2 FFT-algorithm), that is simultaneously using the
maximum number of functional nodes of "Computer"
module. This approach made possible to reduce to a mini-
mum the number of logical steps required for implementa-
tion of "butterfly" operation due to the optimal allocation
of resources of the CB (see [12]). When implementing
such a command, all existing hardware nodes of CB are
used in parallel, namely a 16-bit ALU, a 16-bit multiplier
and a 40-bit adder.

In order to minimize overhead in the implementation of
cyclic procedures, the following tools are introduced into
the RSP architecture for each section:

1) one 8-bit cycle counter in the structure of the CB;

2) one functional block – Branch memory;

3) four formats of operands: the tag loader, the loop
counter loader, the internal loop controller and the exter-
nal loop controller;

4) one 2-bit field of operation type.

The above list of mechanisms implemented in the RSP
allows increasing the performance of computations for a
number of DSP algorithms.

IV. CONCLUSION

The analysis of the correspondence degree of the data-
flow computational paradigm principles to the requirements
of the DSP algorithms has shown the expediency of devel-
oping RSP as a new generation of signal processor that is
based on a new recurrent-dynamic computational paradigm.

One of the most promising approaches to the developing

57

of RSP is its implementation in the form of a two-layer archi-
tecture, composed of leading Von Neumann processor at the
control level and the number of recurrent processors on the
operational level (ROU) directly related to each other. The
control processor is assigned with the following functions:

● connection of multi-core data-flow system with the
environment;

● interface between standard software and capsules
that are stored in BM;

● computing device for successive parts of the algo-
rithm;

● control device for exception handling in a multipro-
cessor network;

● device-linker of self-sustained capsules for their ex-
ecution at the operational level of the architecture.

Such solution made it possible to confirm the potential
application efficiency of the data-flow paradigm in the
DSP area [11, 12] and to ensure compatibility with exist-
ing computing environments.

The implementation of mechanisms described along
this paper in ROU will allow increasing the performance of
computations for a number of DSP algorithms. Some of
these innovations concerning the instruction set and the
operating modes organization of the "Computer" modules
are not directly related to the features of MRDA and can
also be implemented in other DSPs by maximizing the use
of existing hardware.

Another feature of the MRDA being developed is the
orientation to self-timed circuitry: self-timing at the logical
level (by the readiness of the source data) is well combined
with self-timing at the hardware level (by the readiness of
the results). Therefore, despite the fact that synchronous
circuitry is currently used, the interaction between the
functional blocks and the stages of the computational pipe-
line is performed asynchronously.

In the future, it is expected to move from FPGA-basis
with the control processor NIOSII and synchronous imple-
mentation of the ROU to a custom CMOS-basis with
KOMDIV as a control processor and self-timed implementa-
tion of ROU as a coprocessor. Moreover there are self-timed
coprocessors for KOMDIV that have already been devel-
oped: 64-bit device of division and of square-root extrac-
tion [13] and 64/32-bit device of multiplication-addition
with a single entry rounding [14].

ACKNOWLEDGEMENTS

In conclusion, we want to express our gratitude to N.
V. Morozov, D. Yu. Stepchenkov and Yu. I. Shikunov for
an invaluable contribution to the development of the soft-
ware and hardware model of MRDA.

SUPPORT

The study was partially supported by the 2016’s sub-
program no. 4 of ONIT RAS department. (Project 0063-
2015-0016 III.3).

REFERENCES

[1] J. Gurd, C. Kirkham, and I. Watson. The Manchester proto-
type dataflow computer. Commun. ACM, 28(1), Jan. 1985.
P. 34-52.

[2] Arvind, and R.S. Nikhil. Executing a program on the MIT
tagged token dataflow architecture. IEEE Trans. Comput.,
39(3), Mar. 1990. P. 300-318.

[3] K. Hiraki, S. Sekiguchi, and T. Shimada. Status report of
SIGMA1: A dataflow supercomputer. In J.L.Gaudiot and
L.Bic, editors. Advanced Topics in DataFlow Computing,
chapter 7, Prentice Hall, Englewood Cliffs, New Jersey,
1991. P. 207-224.

[4] Burcev V.S. Overlapping of computing processes and de-
velopment of architecture of the supercomputer. Moscow,
Torus Press, 2006. 203 p. (in Russian).

[5] Sundararajan Sriram. Minimizing Communication and Syn-
chronization Overhead in Multiprocessors for Digital Signal
Processing. Ph.D. Dissertation, Dept. of EECS, Technical
Report UCB/RL 95/90, University of California, Berkeley,
CA 94720, October, 1995.

[6] M. Chase. A Pipelined Data Flow Architecture for Digital
Signal Processing: The NEC μPD7281. IEEE Workshop on
Signal Processing, November 1984.

[7] Iiro Hartimo. DFSP: A Data Flow Signal Processor. IEEE
Transactions on Computers. January 1986, V. C-35, N 1, P.
23-33.

[8] K. Kronlof, J. Skytta, 0. Simula, I. Hartimo. Simulation of a
digital signal processing architecture based on the data flow
principle. Proc. ISCAS'82, Rome, Italy, May 10-12, 1982.
P. 1053-1056.

[9] Arvind. The Evolution of Dataflow Architecture from Static
Dataflow to P-RISC. Proc. of Workshop on Massive Paral-
lelism: Hardware, Programming and Application, Amalfi,
Italy, October 1989. Academic Press, 1990.

[10] Volchek V.N., Stepchenkov Yu.A., Petrukhin V.S.,
Prokofyev A.A., Zelenov R.A. Digital Signal Processor
With Non-Conventional Recurrent Data-Flow Architecture.
Problems of Perspective Micro- and Nanoelectronic Sys-
tems Development - 2010. Proceedings, edited by A.
Stempkovsky, Moscow, IPPM RAS, 2010. P. 412-417 (in
Russian).

[11] Yu. Shikunov, D. Khilko, Yu. Stepchenkov. Hardware and
Software Modelling and Testing of Non-Conventional Da-
ta-Flow Architecture. Proceedings of the 2016 IEEE North
West Russia Section Young Researchers in Electrical and
Electronic Engineering Conference (ElConRusNW). 2016.
P. 360-364.

[12] Yu. Stepchenkov, V. Volchek, V. Petrukhin, A. Prokofyev.
Hardwere maintenance for digital processing of speech sig-
nals in the recurrent dataflow processor. Systems and means
of informatics – TORUS PRESS, Moscow, 2010. Vol. 20.
No. 1. Р. 31-47 (in Russian).

[13] Stepchenkov Y., Diachenko Y., Zakharov V.,
Rogdestvenski Y., Morozov N., Stepchenkov D. Quasi-
Delay-Insensitive Computing Device: Methodological As-
pects and Practical Implementation. PATMOS'2009: Pro-
ceedings of the International Workshop on power and tim-
ing modeling, optimization and simulation. – Delft, The
Netherlands, Springer 2010. P. 276–285.

[14] Stepchenkov Yu., Zakharov V., Rogdestvenski Yu.,
Diachenko Yu., Morozov N., Stepchenkov D. Speed-
Independent Floating Point Coprocessor. Proceedings of
IEEE East-West Design & Test Symposium
(EWDTS’2015), Batumi, Georgia. 2015. P. 111-114.

58

Selected Articles of МES conference, 2017, part 2 © IPPM RAS

Recurrent Data-flow Architecture: Technical Aspects

of Implementation and Modeling Results

D.V. Khilko, Yu. A. Stepchenkov, D. I. Shikunov, Yu. I. Shikunov

The Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of

the Russian Academy of Sciences, IPI FRS CSC RAS,

dhilko@yandex.ru, ystepchenkov@ipiran.ru, shikunovdima@gmail.com, yishikunov@yandex.ru

Abstract — The paper covers methods and features of im-

plementing a prototype architecture based on a new recur-

rent data-flow paradigm of computing designed to solve

problems of digital signal processing. Demonstration of key

principles and technical solutions implemented in the new

architecture is presented, with the example of the Fast Fou-

rier Transform task, as well as estimation of the speed of this

task with respect to its solutions on processors of traditional

single-core and specialized data-flow multi-core architec-

tures. Comparative estimates of the effectiveness of the im-

plementation of algorithms for isolated words recognition in

the environment of the recurrent architecture with respect to

von Neumann single-core one are shown.

Keywords — data-flow architecture, recurrence, digital sig-

nal processing, fast Fourier transform.

I. INTRODUCTION

Nowadays, the tasks of digital signal processing
(DSPs) are becoming more and more relevant with special-
ized digital signal processors (DSP) being used to solve
them. One of the possible options for implementing DSP is
the use of the data-flow architecture. Due to the structure
of DSPs algorithms and the data-flow paradigm having
high synergy they are "well suited" to each other. Besides
the obvious advantages of using data-flow architectures for
DSPs tasks, there are a number of issues that prevent their
successful commercial implementation [1]–[3]. The main
problems are the complexity of the implementation of
pipelined data processing, recursive calculations, cyclic
procedures, interaction with constants and repeated use of
program code.

During the search for a solution for the said issues, the
advanced computer systems architectures department of
IPI FRS CSC RAS have developed a concept of the new
multicore recurrent data-flow architecture (MRDA). Main
aspects of MRDA architecture are described in [4-5]. The
most important features of MRDA are self-sustained data
and recurrence.

Self-sustained are data that incorporate both data and
instructions (Tags), required for their processing. In other
words, two traditional flows – data flow and instruction
flow are combined into a single self-sustained flow. Recur-
rence is the property of dynamic development of the trajec-
tory of the computational process by calculating new val-
ues of tag fields of self-sustained data by means of tag
transformation.

This paper discusses the technical aspects of the quad-
core MRDA prototype implementation and the results of
its experimental approbation for the DSPs tasks. The proto-
type includes tools to support concurrency at different lev-
els (threads, commands and operations of individual in-
structions), as well as hardware supported DSPs (including
specialized instructions and various types of memory con-
stants). The problem of isolated words recognition (IWR)
and a reference DSPs algorithm – fast Fourier transform
were selected as a demonstration tasks.

The FFT and the majority of IWR algorithms have
been implemented and modeled at software and hardware
models. Comparative results of simulation of these algo-
rithms on the MRDA architecture by the calculation time
parameter are shown (in the number of logical steps) with
similar results for a single-core DSP of a traditional archi-
tecture. The obtained values of the acceleration coefficients
range from 2 to 17, which allows estimating the potential
speed of the DSP designed on the basis of the MRDA.

II. MULTICORE RECURRENT DATA-FLOW

ARCHITECTURE PROTOTYPE OVERVIEW

During the search for an acceptable implementation of
the ideas laid down in the MRDA, it was established that
the most appropriate option for implementing a recursive
signal processor (RSP) based on FPGAs is a hybrid two-
layer RSP architecture (HARSP) with a leading von Neu-
mann processor on the control (upper) level (CU) and a
number of data-flow processors at the lower level – the
recurrent operating units (ROU) [6]. The interaction be-
tween the CU and the ROU is carried out by means of a
special dual-port buffer memory (BM) that provides simul-
taneous access to read and write for both CU and ROU.
Single-port access conflicts are resolved in favor of the
ROU. Total BM capacity is 8196 64-bit operands and addi-
tional cell vacancy bits.

The key HARSP component is the ROU, for which both
imitational software as well as hardware VHDL models
have been created [7]–[8]. Fig. 1 shows ROU architecture.
CM_S –constants memory sectional; CM_SR – constants
memory sectional register; CM_SL – constants memory
sectional loadable; C – the computer (in the current im-
plementation amounts to 4 units), which includes the com-
ponent TT – tag transformer.

For most data-flow architectures, it is typical to use a
resource-intensive component that produces the matching

59

Fig. 1. ROU Architecture

pairs of tagged data – associative memory. In the current
implementation of the ROU, the universal associative
memory has been replaced with a directly addressable
small-volume Match memory (MM - 16 cells in this im-
plementation) with an additional data ready bit (DR-bit) in
the addressable cell. This decision imposes strict re-
strictions on the sequence of input data for the ROU, be-
cause it removes the computational step context support.
At the same time, this data structure requires significantly
less component overhead, has higher energy efficiency and
faster performance than associative memory.

In the current version of MRDA, self-sustained data are
represented as operands of specialized types: data-containing
(carry the data), assistant (global configuration options)
and control (precise configuration or special usage). Within
the ROU, the executable program is a sequence of oper-
ands called the capsule. Buffer memory stores a capsule
template that is filled with data by CU. Fig. 2. shows a
fragment of capsule listing for FFT computation.

The recurrence property is represented in the current
version of MRDA via the universal tag transformer (TT),
which executes logical right shift of each tag set on every
computational step. TT reconfiguration for the specific
transform function is a heavily time-consuming process (as
shown in [3] for dynamically reconfigurable FPGA). Ac-
cording to the developers, the use of a universal TT is suf-
ficient for problems from the selected DSPs area. In paper
[9] the convergence of the recursive computational process
was proven (universal TT is a special case). The technical

Fig. 2. FFT capsule listing fragment

implementation of such a mechanism for the functioning of
the TT has required to introduce redundant tag fields into
the operands allocated by delimiters ″ {″ and ″} ″ (Fig. 2).

ROU computational process is organized as follows:

1) Distributor component selects operands from BM
and sends them to the appropriate streams (sections), speci-
fied by tag fields;

2) Match memory compares tag fields and forms op-
erand pairs;

3) Juggler separates the self-sustained data flow into
data and instruction flows, as well as ordering them to the
appropriate inputs of the Computer;

4) Computer performs computation of the results and
tag transformation;

5) Shuffler transfers the obtained results between par-
allel flows, as well as into the Implicator;

6) Implicator writes output data into the BM.

Such organization of instructions processing in the es-
tablished computing process will be carried out in 2.5
steps. Thus, it can be concluded that a two-stage pipeline
should be sufficient for the most effective implementation
of the mechanism incorporated in the MRDA. However,
real tests showed that in the case of combining the Distrib-
utor, MM and Juggler components into one stage of the
pipeline, its performance is much lower than the perfor-
mance of the stage at which the Computer and Implicator
are located. Because of that, the Distributor was separated
to the third pipeline stage.

This solution significantly expanded the functionality
of the Juggler component and reduced the limitations im-
posed by the rejection of associative memory. This is
achieved due to the added functionality of resolving con-
tradictions between the fields of matched operands, provid-
ing interaction with Branch Memory and various subsets of
the Constants Memory, and also by separating and prepar-
ing data and instructions for superscalar processing on the
Computer.

Em-bus

Buffering Memory

CD Model

Capsule

Constructor

Implicator

D0 D1

IR0 IR1Bank 0 Bank 1

F0 F1

Secondary CUDistributor

Juggler

Pair 0 Pair 1 Pair 2 Pair 3

p0 p1 p2 p3

C0 C1 C2 C3

CM_SCM_SR

Shuffler

E-

Branch

Memory
Match Memory CM_SL

CM_G

60

III. HARSP ARCHITECTURAL FEATURES FOR DATA-

FLOW DSP ARCHITECTURE ISSUES SOLUTIONS

A. Superscalar Computer organization. Recursive algo-

rithm support

Recursive algorithms implementation is a common
problem of parallel and data-flow systems. Such algo-
rithms are characterized by high data dependency. At the
same time, most DSPs algorithms use recursion in one
form or another. Therefore, one of the main tasks that have
to be solved when developing a DSP based on data-flow
architecture is to support recursive computations.

The main mechanism for supporting recursive compu-
tations in the ROU is recursive convolution performed at
the programming stage and recurrent involution (transfor-
mation of tags) carried out by TT. The state of the recur-
sive computational process is saved in the functional fields
that are stored in the MM as well as in the intermediate
operands. This approach allows the implementation of any
necessary depth of recursion. In addition, the Computer
also contains a number of additional mechanisms for re-
cursive computations support.

Computer contains: set of buffer registers L, R, B, C
and accumulator A; hardware multiplication block (M);
ALU16 (in this implementation, 16-bit) and 40-bit arith-
metic unit (AU40); shift and round off logic (BS & R);
conditional branch processing support blocks. In addition
to the input buses L- and R-, each of the buffer registers
and the accumulator, as well as the Constant Memory bus,
can be data sources for binary operations. In addition, each
of the blocks - M, ALU16, AU40, BS & R - can function
simultaneously in case the necessary data is provided.

Fig. 3 shows the detailed structure of the Computer com-

ponent.

Thus, the Computer has a super-scalar architecture. In
this implementation of the ROU, multiply-accumulate op-
erations are supported, as well as two superscalar modes
covering a large variety of possible combinations of pairs
(in rare cases triples) of operations that can be performed
within the context of one computational step. This, in turn,
provides efficient transition between the next steps of the
recursive algorithm without any loss in accuracy or addi-
tional logical steps that are necessary to ensure the support
of strong dependence on data.

B. Constant processing mechanisms

Most DSPs algorithms use constants in one way or an-
other. In this regard, all modern DSP processors use spe-
cialized memory types called constants memory. The pro-

posed architecture is no exception. Fig. 1 shows that

HARSP has 4 different types of constants memory, each
capable of storing sequences of constants and tag fields in
a form of self-sustained data.

Each of the constants memory types has its own areas
of accessibility and mechanism of functioning. Purpose
and specific mechanics of each of the memory types are
described below.

1) CM_G - global constants memory, available at the
Distributor level. As well as Distributor, CM_G is a central

Computer

L
R

M

data

 ALU16 AU40

Constatnt
Memory

fields

B C

Branch
Memory

fields

Tag
Transformer

Juggler

fields

Result
Tag Set

BS & R

A

Concatenation

Output Operand

State Register

Flag
Register

Branch Case
Comparator

To
Juggler

Cycle Condition
Comparator

L

R

Fig. 3. Computer structural scheme

resource for all sections. Serves for loading constants that
are transferred using the same rules as input date coming
from BM. This approach allows for loading of full oper-
ands into Distributor for further use by Juggler in resolving
contradictions in tag fields of pair coming from MM.

2) CM_S - constants memory sectional, available di-
rectly to Computer. There are as many modules of this type
of memory as there are sections. This is the most common-
ly used type of constants memory. It is necessary for su-
perscalar operations involving three or more input data
sources. If required, it can provide data for TT.

3) CM_SR - constants memory sectional register,
available to Juggler for writing and Computer for reading.
It has small fixed size and can be used if the amount of
constant data is very limited. It is loaded by special control
operands and used similarly to CM_S.

4) CM_SL - constants memory sectional loadable,
available to control level for writing and Computer for
reading. It is used in case if the volume of constant pool is
too big for CM_S. For example, Viterbi algorithm imple-

61

menting recognition by finding probability extremum by
comparing it with parameters of models of all the recog-
nizable words in the database. It is clear that each such
parameter is a constant but thousands of them have to be
processed. CM_SL has small size and is constantly updat-
ed within computing process.

C. Cycles support in ROU

Many DSPs algorithms include accumulation of data or
repeating the same part of program over defined number of
iterations, and then change the behavior. Therefore, special
tools for cycle operations support have been added to
HARSP.

Iterator component has been added to the Distributor.
Iterator creates special control operands with pre-set delay.
These operands can use value in accumulator A as a se-
cond part of the data pair and have full set of tag fields.
Tag fields can be used by Juggler to resolve contradictions
as well as to overcome the limitations of universal tag
transformer. In other words, using such operands we can
organize cycle procedures with set number of iterations
able to work without loading data from capsule.

Another resource supporting cycle procedures in ROU
is the block shown on Fig. 3 as ʺcycle condition compara-
torʺ. This block includes customizable counter and transi-
tion mechanism that activates when counter reaches zero
value. Within the ROU transition is defined as TT choos-
ing tags from Branch Memory instead of Juggler. End of
cycle condition in ROU can be tested in ʺshortʺ and ʺlongʺ
modes.

ʺShortʺ mode means that transition can occur on the
same step as counter was modified. This effect is achieved
by using the special regime of the Computer. The infor-
mation responsible for activation of this regime is held in
Ot tag field (for example operand 7 in Fig. 2). Organizing
counter checking and transitions in such a way allows us to
perform the cycle procedures with the body of small size
(5-10 computational steps) with maximum efficiency.
ʺShortʺ mode has a disadvantage in a fact that Ot field is a
constant and cannot be transformed by TT which can lead
to wrong tag fields on further operands and has to be
tracked carefully.

ʺLongʺ mode is when counter check-up for zero value
is initiated by special operand – cycle controller. This type
of check organization is called ʺlongʺ because it uses the
whole computational step. This approach has some ad-
vantages. In case when cycle body is relatively big (in-
cludes large amount of computational steps) ʺlongʺ mode
can prove itself useful. Firstly, we don’t need to modify Ot
field and secondly – cycle exit procedure can be formed for
multiple sections simultaneously (for example when cycle
bodies are the same for all the sections). It is worth noting
that conditional branching in ROU follows the exact same
pattern.

D. Program repetition and reusing output data

Some DSP algorithms imply computing a parameter to
then refine it as a result of multiple iterations. For such

algorithms, ability to repeat program code (in ROU case –
repeated use of capsule) as well as rewriting output data for
repeated use on future iterations can be useful.

Within the ROU output data can be processed in two
regimes. In first regime output data are simply accumulat-
ed and sent to control level for processing. Such data are
placed in output section of capsule. In second regime out-
put data are rewritten into capsule template into set ad-
dresses. Thus, capsule is getting prepared for the next itera-
tion.

Program repetition is implemented in ROU using Sup-
port control unit (SCU) that is responsible for setting the
boundaries of capsule's fragment to be repeated. SCU also
controls the addressing in BM, thus controlling the flow of
data into Distributor. Such regime was used most fully in
our implementation of FFT. In particular, hardware support
for FFT was implemented in ROU, including bit-reverse
addressing and ʺbutterflyʺ operation primitive.

IV. HARSP FEATURE DEMONSTRATION ON FAST

FOURIER TRANSFORM IMPLEMENTATION

In order to demonstrate architecture potential of
HARSP FFT Radix 2 (256 points) algorithm was chosen as
it is a standard used in most DSPs applications. The heart
of the problem is to compute 1024 ʺbutterflyʺ operations
(128 operations in 8 steps). Implementation efficiency has
been assessed based on computational time (in logical
steps). Computational speed was compared between
HARSP implementation and single-core microcontroller
dsPIC30F [10].

According to [10] library FFT implementation on
dsPIC30F is computed in 476 µs on 40 MIPS, which
means it takes roughly 19000 instructions including all
data rewrite operations.

For HARSP implementation, the time cost of data re-
write can be neglected because operations on intermediate
data are taken care of by hardware FFT support and are
parallel to the computational process. Fig. 2 shows a frag-
ment of FFT capsule consisting mostly of packaged oper-
ands, which helps to reduce capsule size upwards of 4
times. Fig. 4 shows fragment of FFT HARSP graph-
capsule. It is shown for 2 sections because computational
process in parallel sections is completely identical.

Each section computes 4-cycle hardware supported
“butterfly” operation. This way 4 “butterflies” are calculat-
ed in 4 computational steps. Therefore, including reconfig-
uration costs it takes 130-135 steps to compute 128 “but-
terfly” operations, which adds up across 8 steps of algo-
rithm to 1024 “butterflies” in 1100 computational steps.
Such an impressive result is achieved thanks to superscalar
computational blocks of ROU, constants memory, capsule
repetition (8 steps) and rewriting data into capsule. As
shown in Fig. 4, at each computational step multiple ac-
tions take place in superscalar mode, such as: summation,
multiplication with inputs from constants memory, round-
ing, writing data into internal registers. This process makes
good use of all the technical solutions described earlier.

62

Fig. 4. FFT graph-capsule fragment

Microcontroller dsPIC30F has been chosen as a refer-
ence point because IPI RAS team created the commercial
implementation of word recognition system for that pro-
cessor (recognition library in [10]). We consider the given
estimations objective because they are based on real results
in IWR field.

V. HARSP HARDWARE AND SOFTWARE MODELLING

RESULTS

For experimental approbation of HARSP, the IWR
problem implemented earlier for dsPIC30F microcontroller
for Microchip company, as well as standard Radix 2 256
point FFT algorithm, were chosen. Specialized methodolo-
gy for developing capsules within HARSP is presented in
[9]. Almost all of the IWR algorithms were implemented
for ROU by applying aforementioned methodology. Soft-
ware and hardware platform GAROS IDE [11] helped
simulate each of the implemented algorithms and estimate
its computational speed. It is worth mentioning that accel-
eration factor estimates presented below are subject to the
following limitations:

1) dsPIC30F microcontroller is based on von
Neuman architecture;

2) HARSP has 4 sections and 4 cores accordingly,
while dsPIC30F is single-core;

3) HARSP computing blocks have a much wider su-
perscalar regime support, compared to dsPIC30F, that
has very limited command pool defined for such se-
mantics;

4) It is inferred that all the input data is either ready
or is loaded by control level in time during computa-
tional process. Thus, time it takes to prepare the data
was not taken into account for our estimations for both
dsPIC30F and HARSP.

Besides, some capsules were implemented in two ways
to find the one that shows higher performance. Variant 1
means that algorithm was implemented to use all 4 compu-
tational cores and variant 2 means it was implemented for
four sets of input data computing each on its own core.
Comparison results for chosen algorithms are presented in
Table 1. Some of the results are preliminary (marked with
“~”) due to the fact that software and hardware modeling
tools need to be revised and such revision can lead to reit-
erating on capsules.

Table 1

Word Recognition Algorithms Implementation Results

Algorithm Name dsPIC30F logic

steps

ROU logic steps Amplification coefficient

FFT2_256 ~19000 ~1100 ~17,2

Butterworth filter 1360 437 3,11

Band filter (single band) 1428 442 3,23

Natural logarithm х4 36*4 26 1,38*4

RASTA filter 153 45 3,4

Exponent х4 32*4 20 1,6*4

Cosine inversed DFT 36 17 2,12

Durbin recursion ~800 ~124 ~6,5

PLP parameters 144 32 4,5

PLP parameters *) 144 30 4,8

Viterbi algorithm 91*N-143 99*N

N – is an amount of observations in observation vector (N>5)

Section 0 @Cs=0 @Cj=ri Section 1 @Cs=0 @Cj=ri

R192,
R194,
R193,
R195

M

.

.

.

S

11

.

.

.

HARSP

R060,
R062,
R061,
R063

128

I252,
I254,
I253,
I255

129

I060,
I062,
I061,
I063

130

R252,
R254,
R253,
R255

131

R124,
R126,
R125,
R127

132

 I299,
 I299,
 I299,
I299

133

 I124,
I126,
I125,
I127

134

R299,
R299,
R299,
R299

135

Cacn ,l,

R060 ><,k,
0

R060+[C]> [BS&R]R060'

Sh=0

R060-[C]> [A]=R188'

[B]*Iw*=E*> [C]

Cacn ,l,

R062 ><,k,
0

R062+[C]> [BS&R]R062'

Sh=0

R002-[C]> [A]=R190'

[B]*Iw*=E*> [C]

I188 ><,r,

I252 ><,k,
0

I188*Rw*=F*

Sh=1

I252> [B]

`F*+[C]=H*> [C]

[A]> [BS&R]
=R188' I190 ><,r,

I254 ><,k,
0

I190*Rw*=F*

Sh=1

I254> [B]

F*+[C]=H*> [C]

[A]> [BS&R]=R
190'

Cacn ,l,

I060 ><,k,
0

I060+[C]> [BS&R]I060'

Sh=0

I060-[C]> [A]=I188'

[B]*Iw**=D**> [C]

Cacn ,l,

I062 ><,k,
0

I062+[C]> [BS&R]I062'

Sh=0

I062-[C]> [A]=I190'

[B]*Iw**=D**> [C]

Cacn ,l,

R192 ><,k,
0

R192*Rw**=C**

Sh=0

R192> [B]

C**+[C]=G**> [C]

[A]> [BS&R]
=I128' Cacn ,l,

R194 ><,k,
0

R194*Rw**=C**

Sh=0

R194> [B]

C**+[C]=G**> [C]

[A]> [BS&R]=

I130'

Cacn ,l,

R252 ><,k,
0

R252*Rw**=C**

Sh=0

R252> [B]

C**+[C]=G**> [C]

[A]> [BS&R]
=I188' Cacn ,l,

R254 ><,k,
0

R254*Rw**=C**

Sh=0

R254> [B]

C**+[C]=G**> [C]

[A]> [BS&R]=I
190'

Cacn ,l,

R124 ><,k,
0

R124+[C]> [BS&R]R124'

Sh=0

R124-[C]> [A]=R252'

[B]*Iw*=E*> [C]

Cacn ,l,

R126 ><,k,
0

R126+[C]> [BS&R]R126'

Sh=0

R126-[C]> [A]=R254'

[B]*Iw*=E*> [C]

I252 ><,r,

I299 ><,k,
0

I252*Rw*=F*

Sh=1

I299> [B]

F*+[C]=H*> [C]

[A]> [BS&R
]=R252' I254 ><,r,

I299 ><,k,
0

I254*Rw*=F*

Sh=1

I299> [B]

F*+[C]=H*> [C]

[A]> [BS&R]=
R254'

Cacn ,l,

I124 ><,k,
0

I124+[C]> [BS&R]I124'

Sh=0

I124-[C]> [A]=I252'

[B]*Iw**=D**> [C]

Cacn ,l,

I126 ><,k,
0

I126+[C]> [BS&R]I126'

Sh=0

I126-[C]> [A]=I254'

[B]*Iw**=D**> [C]

Cacn ,l,

R299 ><,k,
0

R299*Rw**=C**

Sh=0

R299> [B]

C**+[C]=G**> [C]

[A]> [BS&R]
=I252' Cacn ,l,

R299 ><,k,
0

R299*Rw**=C**

Sh=0

R299> [B]

C**+[C]=G**> [C]

[A]> [BS&R]=I
254'

FFT (stage 1)

63

VI. CONCLUSION

Technical decisions taken while implementing MRDA
prototype allowed us on one hand to overcome some prob-
lems typical for data flow architectures, on the other hand
to get a sizable performance increase compared to tradi-
tional DSP processors. The most important result is esti-
mated efficiency of hardware support for FFT algorithm.
Combining different ROU mechanisms, we reached accel-
eration coefficient upwards of 17 compared to traditional
single-core DSP. Furthermore, acceleration coefficient
estimations for most IWR algorithms are in 3 – 6 range
which is a good result for quad core implementation.

Studying capsules that are implementing various DSPs
algorithms we have estimated average computational re-
sources use rate to be around 60-70%. Yet the computa-
tional resources use rate for FFT, cosine inverse DFT,
Viterbi, Natural logarithm and exponent (variant 2) algo-
rithms approaches 100%. Obtained result proves high effi-
ciency of technical decisions taken in MRDA prototype.

It is planned to implement MRDA prototype for 32-bit
floating point data based on self-timed hardware, which
will allow for higher energy efficiency and fault tolerance.
Our team has extensive experience in developing self-
timed 32/64-bit co-processor hardware: 64-bit device of
division and of square-root extraction [12]; device of mul-
tiplying with accumulation and 64/32-bit device of multi-
plication-addition with a single entry rounding [13].

Nevertheless, obtained results show the need of further
development and improvement of the new architecture to
increase the average resource use coverage and MRDA
end performance.

ACKNOWLEDGEMENTS

In conclusion, we want to express our gratitude to N.
V. Morozov, Yu. G. Diachenko and Yu. V. Rogdestvenskii
for an invaluable contribution to the development of hard-
ware model of MRDA.

SUPPORT

The study was partially supported by the 2016’s sub-
program no. 4 of ONIT RAS department (Project 0063-
2015-0016 III.3).

REFERENCES

[1] E. A. Lee and J. C. Bier. Architectures for Statically Sched-
uled Dataflow. Parallel Algorithms and Architectures for
DSP Applications, edited by Magdy A. Bayoumi. Dordrecht.
Kluwer Academic Publishers, 1991. pp. 159-190.

[2] V.P. Srini. DFS-SuperMPx: Low-cost Parallel Processing
System for Machine Vision and Image Processing. Proc.
Third International Conference “Parallel Computing Tech-
nologies”, PaCT-95. St. Petersburg, 1995, pp. 356-369.

[3] S. Voigt, M. Baesler, T. Teufel. Dynamically reconfigurable
dataflow architecture for high-performance digital signal pro-
cessing. Journal of Systems Architecture. 2010, no. 56, pp. 561-
576.

[4] Yu. Shikunov, D. Khilko, Yu. Stepchenkov. Hardware and
Software Modelling and Testing of Non-Conventional Data-
Flow Architecture. Proceedings of the 2016 IEEE North West
Russia Section Young Researchers in Electrical and Electronic

Engineering Conference (ElConRusNW), 2016. pp. 360-364.
[5] Yu. Stepchenkov, V. Volchek, V. Petrukhin, A. Prokofyev.

Mehanizmy obespechenija podderzhki algoritmov cifrovoj
obrabotki rechevyh signalov v rekurrentnom obrabotchike
signalov [Hardwere maintenance for digital processing of
speech signals in the recurrent dataflow processor]. Sistemy
i Sredstva Informatiki [Systems and means of informatics].
2010, 20(1), pp. 31-47 (in Russian).

[6] Volchek V.N., Stepchenkov Yu.A., Petrukhin V.S.,
Prokofyev A.A., Zelenov R.A. Cifrovoj signal'nyj processor
s netradicionnoj rekurrentnoj potokovoj arhitekturoj [Digital
Signal Processor With Non-Conventional Recurrent Data-
Flow Architecture]. Problems of Perspective Micro- and
Nanoelectronic Systems Development - 2010. Proceedings,
edited by A. Stempkovsky, Moscow, IPPM RAS, 2010. P.
412-417 (in Russian).

[7] Khilko D. V., Stepchenkov Yu. A, Diachenko Yu. G.,
Shikunov Yu. I., Morozov N. V. Apparatno-programmnoe
modelirovanie i testirovanie rekurrentnogo operacionnogo
ustrojstva [Hardware and Software Modelling and Testing of
Recurrent Operational Unit]. Sistemy i sredstva informatiki
[Systems and means of informatics]. 2015. Vol. 25. No. 4,
pp. 78-90 (in Russian).

[8] Khilko D. V., Shikunov Yu. I., Stepchenkov Yu. A.
Osobennosti programmnoj realizacii imitacionnoj modeli
potokovoj rekurrentnoj arhitektury [Multicore Recurrent Da-
ta-flow Architecture Imitational Model Implementation Fea-
tures]. Trudy Vtoroj molodezhnoj nauchnoj konferencii
«Zadachi sovremennoj informatiki [Proc. of the Second
youth scientific conference] Modern Problems in Informat-
ics], Moscow, FRC ITCS RAS, 2015. pp. 220-227 (in Rus-
sian).

[9] Khilko D.V., Stepchenkov Yu.A. Teoreticheskie aspekty
razrabotki moetodologii programmirovanija rekurrentnoj
arhitektury [Theoretical Aspects of Recurrent Architecture
Programming Methodology Development]. Sistemy i
sredstva informatiki – [Systems and means of informatics].
2013. 23 (2), pp, 133-156 (in Russian).

[10] URL: http://microchip.com.ru/Support/Download/13_64.pdf
(accessed 04.04.2016).

[11] Khilko D.V., Stepchenkov Yu.A., Shikunov Yu.I. The in-
strumental software development environment for hybrid ar-
chitecture of recurrent signal processor (GAROS IDE). Cer-
tificate of state registration of computer program
No. 2015614004 from 01.04.15.

[12] Y. Stepchenkov, Y. Diachenko, V. Zakharov, Y.
Rogdestvenski, N. Morozov, and D. Stepchenkov. Self-
Timed Computing Device for High-Reliable Applications //
Proc. International Workshop on power and timing model-
ing, optimization and simulation (PATMOS'2009), Delft,
Netherlands, 2009. pp. 276-285.

[13] Sokolov I.A., Stepchenkov Y.A., Rozhdestvenskii Y.V.,
Diachenko Y.G. Samosinhronnoe ustrojstvo umnozhenija-
slozhenija gigaflopsnogo klassa: metodologicheskie aspekty
[Self-timed multiply-add unit of gigaflops range: methodo-
logical aspects]. Problems of Perspective Micro- and
Nanoelectronic Systems Development - 2014. Proceedings,
edited by A. Stempkovsky, Moscow, IPPM RAS, 2014.
Part IV. pp. 51-56 (in Russian).

64

	2.pdf
	0-1 Title_0_1_17 (Ч_2) eng Ив
	ПРОБЛЕМЫ РАЗРАБОТКИ ПЕРСПЕКТИВНЫХ
	VII Всероссийской научно-технической конференции МЭС-2016
	of the VII All-Russia Science&Technology Conference MES-2016

	12_D182-98-3711-paper-Eng-fin
	13_D152-522-0295-paper-Eng-final

