
Selected Articles of MES conference, 2019, issue 2 © IPPM RAS

DOI 10.31114/2078-7707-2019-2-40-45

Development of Capsule Programming Means for Recurrent Data-
Flow Architecture

D.V. Khilko1, Yu.A. Stepchenkov2, Yu.I. Shikunov3, G.A. Orlov4

The Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of
the Russian Academy of Sciences

1dhilko@yandex.ru, 2ystepchenkov@ipiran.ru, 3yishikunov@yandex.ru, 4orlov.jaja@gmail.com

Abstract — This paper presents new results obtained in the
course of work on the development of methods and tools for
software programming and debugging of the multicore re-
current data-flow architecture (MRDA). At the current stage
of development, the main goal is to automate the construc-
tion of a special programmer's tool – graph-capsules (GC),
which visualizes the distribution of computing resources of
the MRDA. To automate its creation, a component was de-
veloped to construct GC in numerical form, using the model-
ling results. The next step in the development of program-
ming toolset is the creation of tools for graph and GC con-
struction based on their symbolic form, which lays the foun-
dation for the creation of the compilation tools in the future.
This paper is dedicated to discussing the results of solving
this problem.

Keywords — data-flow architecture, data-flow graph, graph-
capsule, capsule programming.

I. INTRODUCTION

Most modern computing systems support parallel compu-
ting at various levels. The promising, but a not widespread
direction of parallel computing systems research is the
development of computing devices based on a data-flow
architecture. One of the main advantages of such architec-
tures is the “natural” support for parallelism due to the
principle of computing based on data readiness. However, the
functional prototype based on the data-flow architecture
has not yet been created, due to a number of issues [1] – [3].

The Department of Architecture and circuitry basics of
Innovative computing systems of The Institute of Informat-
ics Problems in Russia have been developing multicore
recurrent data-flow architecture (MRDA), which is appro-
bated on the subject area of DSP. The main aspects of the
MRDA are described in [4] – [6]. As [7] shows, principles
incorporated into the architecture allow to partially or
completely solve most of the problems inherent in data-
flow architectures. Currently, the development of the
MRDA is focused on three main areas: increasing its
productivity, creating software development and debug-
ging tools, and reducing data redundancy.

The theoretical and technical aspects of the architecture
have been described in [7], [8], which cover the mecha-
nisms and solutions that made it possible to achieve high
performance of the MRDA prototype on the isolated word

recognition problem. The problems of reducing data re-
dundancy in data-flow architectures and the mechanisms
for their solutions are discussed in detail in [9], [10]. As
shown in [11] – [13], the key features of the architecture
prevent the use of existing programming tools. Therefore,
specialized software development and debugging tools are
being created for the MRDA.

For the experimental approbation of the proposed ar-
chitecture, its prototype has been developed: a recurrent
signal processor (RSP), implemented in a hybrid two-level
variant with a leading von Neumann processor at the con-
trolling (upper) level (CU) and a number of data-flow pro-
cessors at the lower level – recurrent operating unit (ROU)
[14]. This prototype has been called the hybrid architecture
of recurrent signal processor (HARSP).

Currently, the recurrent data-flow programming meth-
odology [12], hardware-software modelling toolsets SIM-
PRA and SPRUT [15], [16] as well as the integrated de-
velopment environment GAROS IDE have been created
and deployed [13], [17]. The program in the MRDA is a
sequence of self-sufficient data, which encode instructions
for their processing. Such a presentation has been called a
capsule, and the programming style itself – the capsular
programming paradigm.

Further development of programming tools led to the
need for refinement of both programming methodology as
well as programming tools architecture. In [18], the initial
results of programming methodology refinement are dis-
cussed, and a description is given of new development
tools that allow a programmer to build a special tool — a
graph capsule in numerical form. The experience of using
this tool has shown the need for further development of
programming methodology, as well as the creation of tools
for constructing GC in symbolic form. This paper is cover-
ing the results of these developments.

II. RECURRENT DATA-FLOW PROGRAMMING

 METHODOLOGY

A. General description of methodology
Paper [12] covers the theoretical aspects of the MRDA

programming process methodological support elements
development. In particular, the paper defines the concept of
a recurrent data-flow programming methodology, which

40

mailto:dhilko@yandex.ru
mailto:ystepchenkov@ipiran.ru
mailto:yishikunov@yandex.ru
mailto:orlov.jaja@gmail.com

describes the software development process, starting from
the mathematical description of the problem to the creation
of capsules and data structures corresponding for them.
The key stage of the methodology is the “Capsule Pro-
gramming” stage, which describes the process of develop-
ing a capsule designed to solve a specific problem. Fig. 1
shows the overall structure of the methodology.

Recurrent data-flow programming methodology

Basis:
- informatics

- system analysis

Principle:
- capsular program

representation

Features:
- recurrent convolution
- recurrent involution

CP start condition:
- redefined “firing” rule

Subject:
- programmer

Object:
- capsule (program)

Subject-matter:
- software development

Timeline structure

Stage I:
- Task analysis for
recurrent data-flow

computational model
application

Stage II:
- Task decomposition

into control and
computational subtasks

Stage III:
- Capsule

programming
technique

Stage IV:
- Integrated software

debugging

Substage III-1:
- Capsule

functionality
determination

Subgstage III-2:
- Capsule

development

Substage III-3:
- Capsule verification

A capsule, like any other program, has a corresponding
textual representation, which was called a symbolic cap-
sule. To debug a symbolic capsule, both test and real data
packets are used, based on which a numerical capsule is
formed and modeled. Meanwhile, a legend of input data
names is compiled.

The fundamental property of the MRDA (“recurrence”)
allows for the creation of programs with a dynamically
generated computational process (CP) schema. On the one
hand, this allows us to compress the original program, but
on the other, it significantly complicates the development
and debugging of such programs (capsules). Therefore, the
new developer element was introduced into the methodology,
a – “graph-capsule”, which is a graphical interpretation of the
process of unfolding the CP scheme encoded in a capsule.

The experience of programming and problem solving
made it possible to organize an iterative capsule develop-
ment process based on a data-flow graph, a GC, and model-
ling results. In this case, the GC is used as a means of veri-
fication. The use of GC as a primary debugging tool has
proven its practical effectiveness. However, the manual
construction of this developer tool is associated with signif-
icant difficulties. The problem of automating the construc-
tion of GC naturally arose. The solution of this scientific
and technical problem has made it possible not only to
shorten the development and debugging time of capsules by
an order of magnitude but also to increase the visibility of
capsule modelling results and to assess utilization degree of
the architectures computing resources.

At the current stage of development of programming
tools, it was possible to partially solve the problem of au-
tomating the construction of GC, but only in the numerical
form based on the results of modelling a numerical cap-

sule. The first operating experience of numerical graph-
capsules is presented in [18]. This experience has shown
that debugging and verification using a numerical graph
capsule is associated with a number of difficulties that sig-
nificantly reduce the effectiveness of its use by both the
developers of behavioral models and the developers of the
MRDA prototype. As an example, Fig. 2 shows a fragment
of the data-flow graph (Fig. 1 from [18]) of the implemen-
tation of the Viterbi algorithm, and Fig. 3 and Fig. 4 (Fig. 4
and Fig. 5 from [18]) the corresponding numerical GC.

B. Developments of methodology
One of the key substages (Fig. 1) of “capsular program-

ming” is Substage III-2, which is called “Capsule Programming
Technique” in [12]. In work [18], a refined method was proposed,
according to which we construct:

• the expanded data-flow graph in symbolic form;

• folded symbolic data-flow graph;

Fig. 2. Data-flow graph fragment (Fig. 1 from [18])

sum=
?[0]+qj[1]’ +

+

t1=?t[1]-sum -
Ot=b

?t[1]

qj[2]’ =
qj[2]+ww[2] +

qj[1]’?[0]

sum
[1,0]

qj[2] ww[2]

qj[2]’?[1]

t1<0
[1,0]

t1>=0
[1,0]

Fig. 3. Numerical graph-capsule, part 1 (Fig. 4 from [18])

Fig. 1. Programming methodology structure

41

• symbolic capsule;

• numerical capsule and numerical graph-capsule.

Next, we establish the identity between the symbolic data-
flow graph and the numerical GC. One of the main problems
at this stage is the comparison complexity of the symbolic
data of the data-flow graph and the numerical data of the
GC. In fact, such a comparison is only possible if the leg-
end of the input data is stored, as well as with constant in-
depth analysis of the operations performed at each step. In
addition, Fig. 2 and Fig. 3 reveal a high degree of informa-
tional load of the GC, which greatly complicates its analy-
sis. The need to constantly compare the observed numerical
values with their semantic meaning significantly reduces
the efficiency of the numerical GC. At the same time, the use
of symbols is a more natural way of verification, since the
results obtained are easily comparable with the original
mathematical description of the problem according to sec. 1).

The need to introduce symbolic graph-capsules for veri-
fication became clear. The possibility of automated construc-
tion of both numerical and symbolic graph-capsules allowed
us to logically separate the areas of their application. It is
obvious that a detailed knowledge of the mathematical for-
mulation of the problem being solved and the specifics of its
capsule programming cannot be demanded from the hard-
ware developer. But in the process of hardware debugging,
the numerical graph-capsule turns out to be an extremely
useful tool due to the visual interpretation of the CP in the
hardware environment.

At the same time, at the first stages of software devel-
opment, the programmer needs to be able to evaluate the
logical correctness of the capsule being formed, for exam-
ple: the correctness of operand pairing, the correctness of
operand pairs distribution, the correctness of MRDA inter-
nal resources initialization, etc. Moreover, at this stage of

the capsule development there is no need to solve the is-
sues of accuracy and track the correctness of the numerical
values of variables. Taking into account all the above, the
symbolic graph-capsule becomes the most useful tool for
developing a symbolic capsule.

Thus, the revised capsular programming technique will
include the following steps:

1) Analysis of the mathematical description of the prob-
lem and the construction of the data-flow graph of the par-
allel algorithm;
1) Refinement of the data-flow graph in accordance with
the limitations imposed by the specification of the MRDA
prototype;
2) Building a dynamic data-flow graph by performing a
recurrent convolution of the data-flow graph subgraphs;
3) Development of a fragment of a symbolic capsule that
implements a part of a dynamic graph;
4) Creation and modelling of a fragment of a numerical
capsule by means of GAROS IDE;
5) Construction of the symbolic and numerical GC based
on the modelling results;
6) Verification of the program using the symbolic GC;
7) Verification of both the model and the prototype, as
well as the program using a numerical graph-capsule;
8) A capsule is considered complete if the expanded da-
ta-flow graph is fully consistent with the corresponding
graph-capsules, otherwise go to sec. 4).

To implement the updated methodology, it is necessary
to introduce the means for constructing symbolic graph-
capsules, and in the future, automatic verification tools into
the programming toolset.

III. GRAPH-CAPSULES CONSTRUCTION AUTOMATION IN

GAROS IDE

A. Description of GAROS IDE
The development of capsules for MRDA is fraught

with many difficulties due to the fact that the capsular pro-
gramming language is an “assembler” type language. In
addition, data and instructions in a capsule are stored in a
recurrently compressed form. Therefore, a specialized in-
tegrated development environment GAROS IDE is being
developed, the functionality of which largely implements
the main stages of the recurrent data-flow programming
methodology. Fig. 5 shows the GAROS IDE architecture.

The “Decomposer” component that is intended for de-
composition of the problem being solved (Stage II of the
methodology in Fig. 1) has not yet been implemented. Third-
party HLL tools (high-level languages) are a set of soft-
ware tools for developing software that is executed at the
controlling unit (CU). The “Extractor” component that is
designed to extract parallelism based on the description of
a task in a high-level language (substep III-1 in Fig. 1), is
not yet implemented. The “Graph” component that is in-
tended for manual or automated construction of data-flow
graphs and GC, is partially implemented. It can be used to

Fig. 4. Numerical graph-capsule, part 2 (Fig. 5 from [18])

42

build both symbolic and numeric GC (substage III-2 in Fig.
1). Component "Capsule" is designed to build capsules.

The "CU Model" component is designed to interpret
the control unit program. The component "SIMPRA" is the
imitational modelling toolset, designed for modelling the
behavior of the ROU. The “Linker” component is intended
for organizing the interaction between the CU and the
ROU modelling processes, taking into account the infor-
mation stored in the auxiliary structures of these capsules.
It performs the assembly and interpretation of the entire
task as a whole. The component "Visualizer" is designed
for displaying modelling results, as well as data-flow
graphs and graph-capsules.

Thus, more than half of the development environment
components are already implemented. Also, there is a con-
stant modification of already developed components, in
particular, the "Visualizer" component has been integrated
into the "Graph" component. This paper discusses the re-
sults of extending the functionality of the GAROS IDE for
building symbolic graph-capsules.

B. Symbolic graph-capsule construction technique
GAROS IDE modelling tools currently do not support

symbolic modelling mode. Therefore, it is not possible to
directly convert a symbolic data-flow graph to a symbolic
graph-capsule. At the same time, the developed and suc-
cessfully tested functionality of numerical graph-capsules
construction can be effectively used for the construction of
symbolic graph-capsules. Thus, the task can be formulated
as follows: it is necessary to develop a method for convert-
ing a numerical graph-capsule into a symbolic one based
on the expanded symbolic data-flow graph.

Said data-flow graph is constructed in accordance with
the capsular programming methodology, and the following
requirements are imposed on it:

• For each node, the concept of the context of the com-
putational step number and the name of the parallel com-
putational flow is introduced;

• A type is introduced for each node: common or com-
posite (for superscalar modes);

• Each node describes the operation from the ROUs in-
struction set;

• Each arc is mapped to a datum and its symbolic name;
• For each datum a type is introduced: input, internal,

intermediate, output;
• Multiple typing of arcs (data) is allowed;
• For each arc of “input” type, a correspondence is es-

tablished between the L- or R-component of the pair.
Given these requirements, the method of converting a

numerical graph-capsule into a symbolic one includes the
following steps:

1) Conversion of the expanded data-flow graph in ac-
cordance with the requirements;

9) Construction of the corresponding symbolic capsule;

10) Construction and modelling of the corresponding nu-
merical capsule;

11) Construction of the symbolic graph-capsule based on
the modelling results and converted data-flow graph.

C. Graph-capsule construction tools implementation
To solve the automation of the symbolic graph-

capsules construction in the GAROS IDE, the SIMPRA
and Graph components were refined:

• the utility for constructing the expanded data-flow
graph and the symbolic GC was added to the Graph;

• the modelling results history collection was expanded
in the SIMPRA.

The paper [18] describes the first version of the numer-
ical graph-capsule construction tool integrated into the
“Graph” component and also presents the results of re-
search of various graph construction and visualization li-
braries. The usage experience identified a number of flaws
in the design and informativeness of the numerical graph-
capsule: the lack of information about the internal type of
the operands of the pair; low visibility of the use of internal
resources of computing units, etc. In the updated version of
the "Graph", these problems were also resolved, for both
the symbolic and numerical graph-capsules.

The QuickGraph library was chosen as a tool for build-
ing and processing a data-flow graph. The GraphX library
was used to visualize the data-flow graph, and the Graph-
Viz utility was used for the symbolic and numerical graph-
capsules. Using the QuickGraph library, the object struc-
ture of the expanded data-flow graph is built in the applica-
tion memory, which then can be:

• transferred to the utility for constructing symbolic GC;

• saved to a file;

• visualized with GraphX.

The resulting data-flow graph, along with the modelling
results, is used to build a symbolic GC. Due to the introduc-
tion of the context for each node of the data-flow graph, the

«Decomposer»

Problem

«Extractor»OU subtasks

«Graph»

Decompose

«Capsule»

Third-party
HLL tools

CU Model

SIMPRA

Linker

«Visualizer»

CU_ROU Interface
library

Fig. 5. General GAROS IDE architecture

43

procedure for its comparison with the results of numerical
modelling is greatly simplified. For each next context (step)
during the construction of the symbolic GC the following
actions are carried out:

• Symbolic names loading, assigned to internal re-
sources in the previous step.

• A check is carried out on the availability of output da-
ta if they are available, then the symbolic name of the arc
with the “output” type is substituted.

• For arcs of the “input” type with L and R markers,
their symbolic names are assigned to the corresponding
input data bus of the ROU computing unit.

• For arcs of the “internal” type, their symbolic names
are assigned either directly to internal resources (if the arc
is an output for the current node), or the name of the corre-
sponding source resource is substituted (if the arc is an
input for the current node), the resources are determined
based on the analysis of the modelling history.

• For arcs of the "intermediate" type, the name is as-
signed to the result of intermediate calculations in the su-
perscalar mode.

• As the modelling history is processed, previously asigned
symbolic names are saved until the data is overwritten.

Due to the information provided in the nodes of the da-
ta-flow graph and typed arcs, it is possible to unambigu-
ously map the data presented in the modelling history onto
the name without requiring explicit linkage to the physical
resources of the ROU.

As a demonstration in Fig. 6 and 7 we show the result
of constructing a symbolic capsule graph corresponding to
a fragment of a data-flow graph and a numerical graph-
capsule presented in Fig. 2 - 4.

For greater clarity, we introduce the sequential numbering
of the graph fragment nodes in Fig. 2 from 0 to 3. In node
0, the performed operation is sum= α[0] + qj[1]ʹ. On the
symbolic graph-capsule (Fig. 6, Step = 9), we can easily
identify a similar operation sum=alpha [0] + qj[1]ʹ, while
on a numerical graph capsule (Fig. 3, Step = 9) the same opera-
tion is performed, but its semantics is not obvious without
storing and analyzing additional information about the CP.

Similarly, we can look at the nodes 1-3 in Fig. 2 and
make sure that the symbolic graph-capsule allows us to
easily verify and debug the logic of the capsule execution.
In turn, the numerical graph-capsule helps us to achieve the
required accuracy of calculations. Taking into account that both
graph-capsule variants are built using the same modelling
results, we can guarantee their one-to-one correspondence.

IV. CONCLUSION

The developed tools for constructing data-flow graphs
and symbolic GC provide powerful and flexible capsule veri-
fication tools. The practice of their use has reduced the aver-
age development and debugging time of capsules by 2-3
times compared with the use of numerical GC.

The main scientific and practical result of this work is the
development of methodological and software tools for devel-
oping and debugging of MRDA software:

• the introduction of the symbolic graph-capsule tool as
the main means of verifying the program’s execution;

• development of a numerical graph-capsule tool as the
main tool for debugging a MRDA prototype.

In addition, the simultaneous use of an expanded data-flow
graph and a symbolic GC made it possible to automate the
process of searching for errors when designing a capsule.
This is achieved by automating the analysis of the availa-
bility of ROU internal resources in the symbolic GC gra-
phing utility.

Further development of the MRDA programming tool-
set is seen in solving the inverse problem, namely, in con-
structing a data-flow graph based on the symbolic GC.
Creating such tools will automate the process of capsule
verification at all stages of the capsular programming tech-
nique. The next step will be the development of the first
versions of the tools for compiling and translating data-
flow graphs directly into capsules.

ACKNOWLEDGEMENTS
In conclusion, we would like to express our gratitude to

Morozov N.V., Dyachenko Yu.G. and Rozhdestvensky
Yu.V. for the invaluable contribution to the development
and debugging of capsules on the MRDA hardware model.

Fig. 6. Symbolic graph-capsule, part 1

44

SUPPORT
The research was carried out within the framework of

state task No. 0063-2017-0011.

REFERENCES
[1] E.A. Lee and J.C. Bier. Architectures for Statically Scheduled

Dataflow // Parallel Algorithms and Architectures for DSP
Applications / edited by Magdy A. Bayoumi. Dordrecht.
Kluwer Academic Publishers, 1991. P. 159-190.

[2] V.P. Srini. DFS-SuperMPx: Low-cost Parallel Processing
System for Machine Vision and Image Processing // Proc.
Third International Conference “Parallel Computing Tech-
nologies”, PaCT-95. St. Petersburg, 1995. Vol. 3. P. 356-369.

[3] S. Voigt, M. Baesler, T. Teufel. Dynamically reconfigurable
dataflow architecture for high-performance digital signal
processing // Journal of Systems Architecture, 2010, Vol.
56. Iss. 11, P. 561-576.

[4] Yu. Stepchenkov, V. Volchek, V. Petrukhin, A. Prokofyev.
Hardware maintenance for digital processing of speech sig-
nals in the recurrent dataflow processor // Systems and
means of informatics – TORUS PRESS, Мoscow, 2010. P.
31-47 (in Russian).

[5] Yu. Shikunov, D. Khilko, Yu. Stepchenkov. Hardware and
Software Modelling and Testing of Non-Conventional Da-
ta-Flow Architecture // Proceedings of the 2016 IEEE North
West Russia Section Young Researchers in Electrical and
Electronic Engineering Conference (ElConRusNW), 2016.
P. 360-364.

[6] Yu. Stepchenkov, D. Khilko, Yu. Diachenko, Yu. Shikunov
and D. Shikunov. Software and hardware testing of data-flow
recurrent digital signal processor // Proceedings of IEEE East-
West Design & Test Symposium (EWDTS’2016), Yerevan,
October, 14 - 17, 2016. P. 168-171.

[7] D. Khilko, Yu. Stepchenkov, D. Shikunov, Yu. Shikunov.
Recurrent data-flow architecture: technical aspects of im-
plementa-tion and modeling results // Problems of Perspec-
tive Micro- and Nanoelectronic Systems Development -
2016. Proceedings / edited by A. Stempkovsky, Moscow,
IPPM RAS, 2017. Part II. P. 59-64.

[8] Yu. A. Stepchenkov, Yu. G. Diachenko, D. V. Khilko, V.S.
Petrukhin. Recurrent data-flow architecture: features and
realization problems // Problems of Perspective Micro- and
Nanoelectronic Systems Development - 2016. Proceedings /
edited by A. Stempkovsky, Moscow, IPPM RAS, 2017.
Part II. P. 52-58.

[9] Yu. Shikunov, Yu. Stepchenkov, D. Khilko, D. Shikunov.
Data redundancy problems in data-flow computing and so-
lutions implemented on the recurrent architecture // Pro-
ceedings of the 2017 IEEE Russia Section Young Re-
searchers in Electrical and Electronic Engineering Confer-
ence (EIConRus), 2017 IEEE. P. 335 – 338.

[10] Yu. Shikunov, Yu. Stepchenkov, D. Khilko. Recurrent
mechanism developments in the data-flow computer archi-
tecture // Proceedings of the 2018 IEEE Russia Section
Young Researchers in Electrical and Electronic Engineering
Conference (EIConRus), 2018 IEEE. P. 1413 – 1418.

[11] Khilko D.V. Programming tools of non-conventional multi-
core architecture and prospects for their development //
Sbornik statej II regional'noj nauchno-prakticheskoj konfer-
encii «Mnogoyadernye processory i parallel'noe program-
mirovanie» – Proceedings of II regional scientific-practical
conference "Multi-core processors and parallel program-
ming". Barnaul 2012. P. 62-70 (in Russian).

[12] Khilko D.V., Stepchenkov Yu.A. Theoretical Aspects of
Recurrent Architecture Programming Methodology Devel-
opment // Sistemy i sredstva informatiki, 2013, Vol. 23 no.
2, P. 133-156 (in Russian).

[13] Khilko D.V., Shikunov Yu.I. Software development environment
creation for the recurrent data-flow computational model //
Chetvertaya shkola molodyh uchenyh IPI RAN, 2013.
Sbornik dokladov – Proceedings of fourth young scientists
school IPI RAS. P. 65-77 (in Russian).

[14] Volchek V.N., Stepchenkov Yu.A., Petrukhin V.S., Prokofyev
A.A., Zelenov R.A. Digital Signal Processor With Non-
Conventional Recurrent Data-Flow Architecture // Problemi
razrabotki perspektivnih mikro- i nanoelektronnih system
(MES), Moscow, IPPM RAS, 2010. P. 412-417 (in Russian).

[15] Khilko D.V., Stepchenkov Yu.A. N, Shikunov Yu.I., Dy-
achenko Yu.G. The imitational modeling utilities of recur-
rent dataflow multicore architecture (SIMPRA). Version
two. Certificate of state registration of computer programs
№ 2014610123 from 09.01.14.

[16] Khilko D.V., Stepchenkov Yu.A., Shikunov Yu.I.,
Shikunov D.I. The program complex for design and simula-
tion of hybrid data-flow recurrent systems (SPRUT). Certif-
icate of state registration of computer programs №
2017610828 from 18.01.17.

[17] Khilko D.V., Stepchenkov Yu.A., Shikunov Yu.I. The in-
strumental software development environment for hybrid
architecture of recurrent signal processor (GAROS IDE).
Certificate of state registration of computer program No.
2015614004 from 01.04.15.

[18] Yu. Shikunov, Yu. Stepchenkov, D. Khilko, G. Orlov.
Graph-capsule construction toolset for data-flow computer
architecture // Proceedings of the 2018 IEEE Russia Section
Young Researchers in Electrical and Electronic Engineering
Conference (EIConRus), 2018 IEEE. P. 1419 – 1423.

Fig. 7. Symbolic graph-capsule, part 2

45

	
	I. Introduction
	II. Recurrent data-flow programming methodology
	A. General description of methodology
	B. Developments of methodology

	III. Graph-capsules construction automation in GAROS IDE
	A. Description of GAROS IDE
	B. Symbolic graph-capsule construction technique
	C. Graph-capsule construction tools implementation

	IV. Conclusion
	Acknowledgements
	Support
	References

