
Selected Articles of MES conference, 2019, issue 2 © IPPM RAS 

DOI  10.31114/2078-7707-2019-2-40-45 

Development of Capsule Programming Means for Recurrent Data-
Flow Architecture 

D.V. Khilko1, Yu.A. Stepchenkov2, Yu.I. Shikunov3, G.A. Orlov4 

The Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of 
the Russian Academy of Sciences 

1dhilko@yandex.ru, 2ystepchenkov@ipiran.ru, 3yishikunov@yandex.ru, 4orlov.jaja@gmail.com 

Abstract — This paper presents new results obtained in the 
course of work on the development of methods and tools for 
software programming and debugging of the multicore re-
current data-flow architecture (MRDA). At the current stage 
of development, the main goal is to automate the construc-
tion of a special programmer's tool – graph-capsules (GC), 
which visualizes the distribution of computing resources of 
the MRDA. To automate its creation, a component was de-
veloped to construct GC in numerical form, using the model-
ling results. The next step in the development of program-
ming toolset is the creation of tools for graph and GC con-
struction based on their symbolic form, which lays the foun-
dation for the creation of the compilation tools in the future. 
This paper is dedicated to discussing the results of solving 
this problem. 

Keywords — data-flow architecture, data-flow graph, graph-
capsule, capsule programming. 

I. INTRODUCTION 

Most modern computing systems support parallel compu-
ting at various levels. The promising, but a not widespread 
direction of parallel computing systems research is the 
development of computing devices based on a data-flow 
architecture. One of the main advantages of such architec-
tures is the “natural” support for parallelism due to the 
principle of computing based on data readiness. However, the 
functional prototype based on the data-flow architecture 
has not yet been created, due to a number of issues [1] – [3]. 

The Department of Architecture and circuitry basics of 
Innovative computing systems of The Institute of Informat-
ics Problems in Russia have been developing multicore 
recurrent data-flow architecture (MRDA), which is appro-
bated on the subject area of DSP. The main aspects of the 
MRDA are described in [4] – [6]. As [7] shows, principles 
incorporated into the architecture allow to partially or 
completely solve most of the problems inherent in data-
flow architectures. Currently, the development of the 
MRDA is focused on three main areas: increasing its 
productivity, creating software development and debug-
ging tools, and reducing data redundancy. 

The theoretical and technical aspects of the architecture 
have been described in [7], [8], which cover the mecha-
nisms and solutions that made it possible to achieve high 
performance of the MRDA prototype on the isolated word 

recognition problem. The problems of reducing data re-
dundancy in data-flow architectures and the mechanisms 
for their solutions are discussed in detail in [9], [10]. As 
shown in [11] – [13], the key features of the architecture 
prevent the use of existing programming tools. Therefore, 
specialized software development and debugging tools are 
being created for the MRDA. 

For the experimental approbation of the proposed ar-
chitecture, its prototype has been developed: a recurrent 
signal processor (RSP), implemented in a hybrid two-level 
variant with a leading von Neumann processor at the con-
trolling (upper) level (CU) and a number of data-flow pro-
cessors at the lower level – recurrent operating unit (ROU) 
[14]. This prototype has been called the hybrid architecture 
of recurrent signal processor (HARSP). 

Currently, the recurrent data-flow programming meth-
odology [12], hardware-software modelling toolsets SIM-
PRA and SPRUT [15], [16] as well as the integrated de-
velopment environment GAROS IDE have been created 
and deployed [13], [17]. The program in the MRDA is a 
sequence of self-sufficient data, which encode instructions 
for their processing. Such a presentation has been called a 
capsule, and the programming style itself – the capsular 
programming paradigm. 

Further development of programming tools led to the 
need for refinement of both programming methodology as 
well as programming tools architecture. In [18], the initial 
results of programming methodology refinement are dis-
cussed, and a description is given of new development 
tools that allow a programmer to build a special tool — a 
graph capsule in numerical form. The experience of using 
this tool has shown the need for further development of 
programming methodology, as well as the creation of tools 
for constructing GC in symbolic form. This paper is cover-
ing the results of these developments. 

II. RECURRENT DATA-FLOW PROGRAMMING

 METHODOLOGY 

A. General description of methodology 
Paper [12] covers the theoretical aspects of the MRDA 

programming process methodological support elements 
development. In particular, the paper defines the concept of 
a recurrent data-flow programming methodology, which 
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describes the software development process, starting from 
the mathematical description of the problem to the creation 
of capsules and data structures corresponding for them. 
The key stage of the methodology is the “Capsule Pro-
gramming” stage, which describes the process of develop-
ing a capsule designed to solve a specific problem. Fig. 1 
shows the overall structure of the methodology. 

Recurrent data-flow programming methodology

Basis:
- informatics

- system analysis

Principle:
- capsular program 

representation

Features:
- recurrent convolution
- recurrent involution

CP start condition:
- redefined “firing” rule

Subject:
- programmer

Object:
- capsule (program)

Subject-matter:
- software development

Timeline structure

Stage I:
- Task analysis for 
recurrent data-flow 

computational model 
application

Stage II:
- Task decomposition 

into control and 
computational subtasks

Stage III:
- Capsule 

programming 
technique

Stage IV:
- Integrated software 

debugging

Substage III-1:
- Capsule 

functionality 
determination

Subgstage III-2:
- Capsule 

development

Substage III-3:
- Capsule verification

A capsule, like any other program, has a corresponding 
textual representation, which was called a symbolic cap-
sule. To debug a symbolic capsule, both test and real data 
packets are used, based on which a numerical capsule is 
formed and modeled. Meanwhile, a legend of input data 
names is compiled. 

The fundamental property of the MRDA (“recurrence”) 
allows for the creation of programs with a dynamically 
generated computational process (CP) schema. On the one 
hand, this allows us to compress the original program, but 
on the other, it significantly complicates the development 
and debugging of such programs (capsules). Therefore, the 
new developer element was introduced into the methodology, 
a – “graph-capsule”, which is a graphical interpretation of the 
process of unfolding the CP scheme encoded in a capsule. 

The experience of programming and problem solving 
made it possible to organize an iterative capsule develop-
ment process based on a data-flow graph, a GC, and model-
ling results. In this case, the GC is used as a means of veri-
fication. The use of GC as a primary debugging tool has 
proven its practical effectiveness. However, the manual 
construction of this developer tool is associated with signif-
icant difficulties. The problem of automating the construc-
tion of GC naturally arose. The solution of this scientific 
and technical problem has made it possible not only to 
shorten the development and debugging time of capsules by 
an order of magnitude but also to increase the visibility of 
capsule modelling results and to assess utilization degree of 
the architectures computing resources. 

At the current stage of development of programming 
tools, it was possible to partially solve the problem of au-
tomating the construction of GC, but only in the numerical 
form based on the results of modelling a numerical cap-

sule. The first operating experience of numerical graph-
capsules is presented in [18]. This experience has shown 
that debugging and verification using a numerical graph 
capsule is associated with a number of difficulties that sig-
nificantly reduce the effectiveness of its use by both the 
developers of behavioral models and the developers of the 
MRDA prototype. As an example, Fig. 2 shows a fragment 
of the data-flow graph (Fig. 1 from [18]) of the implemen-
tation of the Viterbi algorithm, and Fig. 3 and Fig. 4 (Fig. 4 
and Fig. 5 from [18]) the corresponding numerical GC. 

B. Developments of methodology 
One of the key substages (Fig. 1) of “capsular program-

ming” is Substage III-2, which is called “Capsule Programming 
Technique” in [12]. In work [18], a refined method was proposed, 
according to which we construct: 

• the expanded data-flow graph in symbolic form;

• folded symbolic data-flow graph;

Fig. 2. Data-flow graph fragment (Fig. 1 from [18]) 
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Fig. 3. Numerical graph-capsule, part 1 (Fig. 4 from [18]) 

Fig. 1. Programming methodology structure 
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• symbolic capsule;

• numerical capsule and numerical graph-capsule.

Next, we establish the identity between the symbolic data-
flow graph and the numerical GC. One of the main problems 
at this stage is the comparison complexity of the symbolic 
data of the data-flow graph and the numerical data of the 
GC. In fact, such a comparison is only possible if the leg-
end of the input data is stored, as well as with constant in-
depth analysis of the operations performed at each step. In 
addition, Fig. 2 and Fig. 3 reveal a high degree of informa-
tional load of the GC, which greatly complicates its analy-
sis. The need to constantly compare the observed numerical 
values with their semantic meaning significantly reduces 
the efficiency of the numerical GC. At the same time, the use 
of symbols is a more natural way of verification, since the 
results obtained are easily comparable with the original 
mathematical description of the problem according to sec. 1). 

The need to introduce symbolic graph-capsules for veri-
fication became clear. The possibility of automated construc-
tion of both numerical and symbolic graph-capsules allowed 
us to logically separate the areas of their application. It is 
obvious that a detailed knowledge of the mathematical for-
mulation of the problem being solved and the specifics of its 
capsule programming cannot be demanded from the hard-
ware developer. But in the process of hardware debugging, 
the numerical graph-capsule turns out to be an extremely 
useful tool due to the visual interpretation of the CP in the 
hardware environment. 

At the same time, at the first stages of software devel-
opment, the programmer needs to be able to evaluate the 
logical correctness of the capsule being formed, for exam-
ple: the correctness of operand pairing, the correctness of 
operand pairs distribution, the correctness of MRDA inter-
nal resources initialization, etc. Moreover, at this stage of 

the capsule development there is no need to solve the is-
sues of accuracy and track the correctness of the numerical 
values of variables. Taking into account all the above, the 
symbolic graph-capsule becomes the most useful tool for 
developing a symbolic capsule. 

Thus, the revised capsular programming technique will 
include the following steps: 

1) Analysis of the mathematical description of the prob-
lem and the construction of the data-flow graph of the par-
allel algorithm; 
1) Refinement of the data-flow graph in accordance with
the limitations imposed by the specification of the MRDA 
prototype; 
2) Building a dynamic data-flow graph by performing a
recurrent convolution of the data-flow graph subgraphs; 
3) Development of a fragment of a symbolic capsule that
implements a part of a dynamic graph; 
4) Creation and modelling of a fragment of a numerical
capsule by means of GAROS IDE; 
5) Construction of the symbolic and numerical GC based
on the modelling results; 
6) Verification of the program using the symbolic GC;
7) Verification of both the model and the prototype, as
well as the program using a numerical graph-capsule; 
8) A capsule is considered complete if the expanded da-
ta-flow graph is fully consistent with the corresponding 
graph-capsules, otherwise go to sec. 4). 

To implement the updated methodology, it is necessary 
to introduce the means for constructing symbolic graph-
capsules, and in the future, automatic verification tools into 
the programming toolset. 

III. GRAPH-CAPSULES CONSTRUCTION AUTOMATION IN

GAROS IDE 

A. Description of GAROS IDE 
The development of capsules for MRDA is fraught 

with many difficulties due to the fact that the capsular pro-
gramming language is an “assembler” type language. In 
addition, data and instructions in a capsule are stored in a 
recurrently compressed form. Therefore, a specialized in-
tegrated development environment GAROS IDE is being 
developed, the functionality of which largely implements 
the main stages of the recurrent data-flow programming 
methodology. Fig. 5 shows the GAROS IDE architecture. 

The “Decomposer” component that is intended for de-
composition of the problem being solved (Stage II of the 
methodology in Fig. 1) has not yet been implemented. Third-
party HLL tools (high-level languages) are a set of soft-
ware tools for developing software that is executed at the 
controlling unit (CU). The “Extractor” component that is 
designed to extract parallelism based on the description of 
a task in a high-level language (substep III-1 in Fig. 1), is 
not yet implemented. The “Graph” component that is in-
tended for manual or automated construction of data-flow 
graphs and GC, is partially implemented. It can be used to 

Fig. 4. Numerical graph-capsule, part 2 (Fig. 5 from [18]) 
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build both symbolic and numeric GC (substage III-2 in Fig. 
1). Component "Capsule" is designed to build capsules. 

The "CU Model" component is designed to interpret 
the control unit program. The component "SIMPRA" is the 
imitational modelling toolset, designed for modelling the 
behavior of the ROU. The “Linker” component is intended 
for organizing the interaction between the CU and the 
ROU modelling processes, taking into account the infor-
mation stored in the auxiliary structures of these capsules. 
It performs the assembly and interpretation of the entire 
task as a whole. The component "Visualizer" is designed 
for displaying modelling results, as well as data-flow 
graphs and graph-capsules. 

Thus, more than half of the development environment 
components are already implemented. Also, there is a con-
stant modification of already developed components, in 
particular, the "Visualizer" component has been integrated 
into the "Graph" component. This paper discusses the re-
sults of extending the functionality of the GAROS IDE for 
building symbolic graph-capsules. 

B. Symbolic graph-capsule construction technique 
GAROS IDE modelling tools currently do not support 

symbolic modelling mode. Therefore, it is not possible to 
directly convert a symbolic data-flow graph to a symbolic 
graph-capsule. At the same time, the developed and suc-
cessfully tested functionality of numerical graph-capsules 
construction can be effectively used for the construction of 
symbolic graph-capsules. Thus, the task can be formulated 
as follows: it is necessary to develop a method for convert-
ing a numerical graph-capsule into a symbolic one based 
on the expanded symbolic data-flow graph.  

Said data-flow graph is constructed in accordance with 
the capsular programming methodology, and the following 
requirements are imposed on it: 

• For each node, the concept of the context of the com-
putational step number and the name of the parallel com-
putational flow is introduced;  

• A type is introduced for each node: common or com-
posite (for superscalar modes); 

• Each node describes the operation from the ROUs in-
struction set; 

• Each arc is mapped to a datum and its symbolic name;
• For each datum a type is introduced: input, internal,

intermediate, output; 
• Multiple typing of arcs (data) is allowed;
• For each arc of “input” type, a correspondence is es-

tablished between the L- or R-component of the pair. 
Given these requirements, the method of converting a 

numerical graph-capsule into a symbolic one includes the 
following steps: 

1) Conversion of the expanded data-flow graph in ac-
cordance with the requirements; 

9) Construction of the corresponding symbolic capsule;

10) Construction and modelling of the corresponding nu-
merical capsule; 

11) Construction of the symbolic graph-capsule based on
the modelling results and converted data-flow graph. 

C. Graph-capsule construction tools implementation 
To solve the automation of the symbolic graph-

capsules construction in the GAROS IDE, the SIMPRA 
and Graph components were refined: 

• the utility for constructing the expanded data-flow
graph and the symbolic GC was added to the Graph; 

• the modelling results history collection was expanded
in the SIMPRA. 

The paper [18] describes the first version of the numer-
ical graph-capsule construction tool integrated into the 
“Graph” component and also presents the results of re-
search of various graph construction and visualization li-
braries. The usage experience identified a number of flaws 
in the design and informativeness of the numerical graph-
capsule: the lack of information about the internal type of 
the operands of the pair; low visibility of the use of internal 
resources of computing units, etc. In the updated version of 
the "Graph", these problems were also resolved, for both 
the symbolic and numerical graph-capsules. 

The QuickGraph library was chosen as a tool for build-
ing and processing a data-flow graph. The GraphX library 
was used to visualize the data-flow graph, and the Graph-
Viz utility was used for the symbolic and numerical graph-
capsules. Using the QuickGraph library, the object struc-
ture of the expanded data-flow graph is built in the applica-
tion memory, which then can be: 

• transferred to the utility for constructing symbolic GC;

• saved to a file;

• visualized with GraphX.

The resulting data-flow graph, along with the modelling 
results, is used to build a symbolic GC. Due to the introduc-
tion of  the context for each  node of the data-flow  graph, the  

«Decomposer»

Problem

«Extractor»OU subtasks

«Graph»

Decompose

«Capsule»

Third-party 
HLL tools

CU Model

SIMPRA

Linker

«Visualizer»

CU_ROU Interface 
library

Fig. 5. General GAROS IDE architecture 
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procedure for its comparison with the results of numerical 
modelling is greatly simplified. For each next context (step) 
during the construction of the symbolic GC the following 
actions are carried out: 

• Symbolic names loading, assigned to internal re-
sources in the previous step. 

• A check is carried out on the availability of output da-
ta if they are available, then the symbolic name of the arc 
with the “output” type is substituted. 

• For arcs of the “input” type with L and R markers,
their symbolic names are assigned to the corresponding 
input data bus of the ROU computing unit. 

• For arcs of the “internal” type, their symbolic names
are assigned either directly to internal resources (if the arc 
is an output for the current node), or the name of the corre-
sponding source resource is substituted (if the arc is an 
input for the current node), the resources are determined 
based on the analysis of the modelling history. 

• For arcs of the "intermediate" type, the name is as-
signed to the result of intermediate calculations in the su-
perscalar mode. 

• As the modelling history is processed, previously asigned
symbolic names are saved until the data is overwritten. 

Due to the information provided in the nodes of the da-
ta-flow graph and typed arcs, it is possible to unambigu-
ously map the data presented in the modelling history onto 
the name without requiring explicit linkage to the physical 
resources of the ROU. 

As a demonstration in Fig. 6 and 7 we show the result 
of constructing a symbolic capsule graph corresponding to 
a fragment of a data-flow graph and a numerical graph-
capsule presented in Fig. 2 - 4. 

For greater clarity, we introduce the sequential numbering 
of the graph fragment nodes in Fig. 2 from 0 to 3. In node 
# 0, the performed operation is sum= α[0] + qj[1]ʹ. On the 
symbolic graph-capsule (Fig. 6, Step = 9), we can easily 
identify a similar operation sum=alpha [0] + qj[1]ʹ, while 
on a numerical graph capsule (Fig. 3, Step = 9) the same opera-
tion is performed, but its semantics is not obvious without 
storing and analyzing additional information about the CP. 

Similarly, we can look at the nodes 1-3 in Fig. 2 and 
make sure that the symbolic graph-capsule allows us to 
easily verify and debug the logic of the capsule execution. 
In turn, the numerical graph-capsule helps us to achieve the 
required accuracy of calculations. Taking into account that both 
graph-capsule variants are built using the same modelling 
results, we can guarantee their one-to-one correspondence. 

IV. CONCLUSION

The developed tools for constructing data-flow graphs 
and symbolic GC provide powerful and flexible capsule veri-
fication tools. The practice of their use has reduced the aver- 
age development and debugging time of capsules by 2-3 
times compared with the use of numerical GC. 

The main scientific and practical result of this work is the 
development of methodological and software tools for devel-
oping and debugging of MRDA software: 

• the introduction of the symbolic graph-capsule tool as
the main means of verifying the program’s execution; 

• development of a numerical graph-capsule tool as the
main tool for debugging a MRDA prototype. 

In addition, the simultaneous use of an expanded data-flow 
graph and a symbolic GC made it possible to automate the 
process of searching for errors when designing a capsule. 
This is achieved by automating the analysis of the availa-
bility of ROU internal resources in the symbolic GC gra-
phing utility.  

Further development of the MRDA programming tool-
set is seen in solving the inverse problem, namely, in con-
structing a data-flow graph based on the symbolic GC. 
Creating such tools will automate the process of capsule 
verification at all stages of the capsular programming tech-
nique. The next step will be the development of the first 
versions of the tools for compiling and translating data-
flow graphs directly into capsules. 
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