РЕАЛИЗАЦИЯ ОСНОВНЫХ АЛГОРИТМОВ ОБРАБОТКИ РЕЧЕВОЙ ИНФОРМАЦИИ НА КОММЕРЧЕСКИХ СИГНАЛЬНЫХ ПРОПЕССОРАХ МАЛОЙ ВЫЧИСЛИТЕЛЬНОЙ МОШНОСТИ

Ю. В. Рождественский

Доклад посвящен изложению результатов исследования алгоритмической базы речевых технологий применительно к сигнальным процессорам малой вычислительной мощности.

Основные цели этой работы:

-определить круг задач в области речевых технологий, имеющих наиболее широкое практическое применение; определить набор основных алгоритмов обработки речи и их функциональный состав;

-оценить возможности распараллеливания вычислительных процедур, базирующиеся как на принципах физиологического восприятия звука, так и на особенностях математической реализации алгоритмов обработки речевой информации;

-исследовать возможности реализации этих алгоритмов на микроконтроллерах и сигнальных процессорах малой вычислительной мощности, ориентируясь на отечественные разработки специальных процессоров новых архитектур и высокой надежности с технологией параллельных вычислений.

В качестве базового был выбран набор задач речевой обработки в составе:

- сжатие голосовой информации при передаче по цифровым каналам;
 - эхоподавление;
 - распознавание голосовых команд;
 - идентификация личности по голосу;
 - синтез речевых сообщений.

Установлено, что естественная параллельность алгоритмов речевой обработки определяется физиологией человеческого слуха и рассматриваемым рабочим частотным диапазоном. Для большинства информационных каналов она равна 16.

В рассмотренных задачах речевой обработки 70-80 % алгоритмов и отдельных функций допускают 16-кратное распараллеливание вычислительных ресурсов.

Выбранные задачи были реализованы и отлажены в системе команд 16-битного сигнального процессора малой производительности и 8-битного микроконтроллера. Результаты представлены в табл. 1. Некоторое снижение качественных характеристик голосовой обработки, выполненной на микроконтроллере, для многих приложений несущественно. Вы

делен и сформулирован набор конкретных вычислительных задач для реализации на процессоре рекуррентной параллельной архитектуры.

Таблица 1.							
		Потребные вычислительные ресурсы					
Задача	Полученные	Сигнальный процессор			Микроконтролл 8 бит		
речевой	характе	Производи		ROM	Производи	RAM	ROM
обработки	ристики	тельность МОРS	Кбай т	Кбай т	тельность МОРЅ	Кбай т	Кбайт
1. Сжатие	Качество	18					
голосовой	MOS=3.8						
информации MELP-4.8							
2. Эхоподав	120 мс	20					
ление G.168	32 мс	6	5.2	8			
3. Распознава	Точность:						
ние голосо	без шумов:						
вых команд	98%	12	3				
на 100 слов	96% в	12	3		10		
	шумах SNR						
	= 15дб: 95%						
	92%						
	_				10		
4. Идентифика	Точность:						
ция личности	1%	10		26	0.4	1.5	1.0
по голосу: 64	2%				9.4	1.5	16
диктора, 10							
фраз по 4-7							
слов	Качество:	5.6					
5. Синтезатор	MOS=3.86	5.0					
речи на 200 слов	MOS=3.74		8		9.9	1.4	14.5